Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Front Microbiol ; 15: 1407904, 2024.
Article in English | MEDLINE | ID: mdl-38863746

ABSTRACT

Prokaryotes dominate global oceans and shape biogeochemical cycles, yet most taxa remain uncultured and uncharacterized as of today. Here we present the characterization of 26 novel marine bacterial strains from a large isolate collection obtained from Blanes Bay (NW Mediterranean) microcosm experiments made in the four seasons. Morphological, cultural, biochemical, physiological, nutritional, genomic, and phylogenomic analyses were used to characterize and phylogenetically place the novel isolates. The strains represent 23 novel bacterial species and six novel genera: three novel species pertaining to class Alphaproteobacteria (families Rhodobacteraceae and Sphingomonadaceae), six novel species and three new genera from class Gammaproteobacteria (families Algiphilaceae, Salinispheraceae, and Alteromonadaceae), 13 novel species and three novel genera from class Bacteroidia (family Flavobacteriaceae), and one new species from class Rhodothermia (family Rubricoccaceae). The bacteria described here have potentially relevant roles in the cycles of carbon (e.g., carbon fixation or energy production via proteorhodopsin), nitrogen (e.g., denitrification or use of urea), sulfur (oxidation of sulfur compounds), phosphorus (acquisition and use of different forms of phosphorus and remodeling of membrane phospholipids), and hydrogen (oxidation of hydrogen to obtain energy). We mapped the genomes of the presented strains to the Tara Oceans metagenomes to reveal that these strains were globally distributed, with those of the family Flavobacteriaceae being the most widespread and abundant, while Rhodothermia being the rarest and most localized. While molecular-only approaches are also important, our study stresses the importance of culturing as a powerful tool to further understand the functioning of marine bacterial communities.

2.
J Hazard Mater ; 467: 133685, 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38335604

ABSTRACT

Marine sediments polluted from anthropogenic activities can be major reservoirs of toxic mercury species. Some microorganisms in these environments have the capacity to detoxify these pollutants, by using the mer operon. In this study, we characterized microbial cultures isolated from polluted marine sediments growing under diverse environmental conditions of salinity, oxygen availability and mercury tolerance. Specific growth rates and percentage of mercury removal were measured in batch cultures for a selection of isolates. A culture affiliated with Pseudomonas putida (MERCC_1942), which contained a mer operon as well as other genes related to metal resistances, was selected as the best candidate for mercury elimination. In order to optimize mercury detoxification conditions for strain MERCC_1942 in continuous culture, three different dilution rates were tested in bioreactors until the cultures achieved steady state, and they were subsequently exposed to a mercury spike; after 24 h, strain MERCC_1942 removed up to 76% of the total mercury. Moreover, when adapted to high growth rates in bioreactors, this strain exhibited the highest specific mercury detoxification rates. Finally, an immobilization protocol using the sol-gel technology was optimized. These results highlight that some sediment bacteria show capacity to detoxify mercury and could be used for bioremediation applications.


Subject(s)
Environmental Pollutants , Mercury , Mercury/toxicity , Mercury/analysis , Bacteria/genetics , Bioreactors
3.
Microbiol Spectr ; : e0089023, 2023 Sep 25.
Article in English | MEDLINE | ID: mdl-37747249

ABSTRACT

Isolation of microorganisms is a useful approach to gathering knowledge about their genomic properties, physiology, and ecology, in addition to allowing the characterization of novel taxa. We performed an extensive isolation effort on samples from seawater manipulation experiments that were carried out during the four astronomical seasons in a coastal site of the northwest Mediterranean to evaluate the impact of grazing, viral mortality, resource competition reduction, and light presence/absence on bacterioplankton growth. Isolates were retrieved using two growth media, and their full 16S rRNA gene was sequenced to assess their identity and calculate their culturability across seasons and experimental conditions. A total of 1,643 isolates were obtained, mainly affiliated to the classes Gammaproteobacteria (44%), Alphaproteobacteria (26%), and Bacteroidia (17%). Isolates pertaining to class Gammaproteobacteria were the most abundant in all experiments, while Bacteroidia were preferentially enriched in the treatments with reduced grazing. Sixty-one isolates had a similarity below 97% to cultured taxa and are thus putatively novel. Comparison of isolate sequences with 16S rRNA gene amplicon sequences from the same samples showed that the percentage of reads corresponding to isolates was 21.4% within the whole data set, with dramatic increases in the summer virus-reduced (71%) and diluted (47%) treatments. In fact, we were able to isolate the top 10 abundant taxa in several experiments and from the whole data set. We also show that top-down and bottom-up controls differentially affect taxa in terms of culturability. Our results indicate that culturing marine bacteria using agar plates can be successful in certain ecological situations. IMPORTANCE Bottom-up and top-down controls greatly influence marine microbial community composition and dynamics, which in turn have effects on their culturability. We isolated a high amount of heterotrophic bacterial strains from experiments where seawater environmental conditions had been manipulated and found that decreasing grazing and viral pressure as well as rising nutrient availability are key factors increasing the success in culturing marine bacteria. Our data hint at factors influencing culturability and underpin bacterial cultures as a powerful way to discover new taxa.

SELECTION OF CITATIONS
SEARCH DETAIL
...