Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
2.
PLoS One ; 16(11): e0257959, 2021.
Article in English | MEDLINE | ID: mdl-34767570

ABSTRACT

Wheat has a remarkable importance among cereals worldwide. Wheat stem and leaf rust constitute the main threats that destructively influence grain quality and yield production. Pursuing resistant cultivars and developing new genotypes including resistance genes is believed to be the most effective tool to overcome these challenges. This study is the first to use molecular markers to evaluate the genetic diversity of eighteen Egyptian wheat genotypes. Moreover, the molecular docking analysis was also used to assess the Cu-chitosan nanoparticle (CuChNp) treatment and its mode of action in disease control management. The tested genotypes were categorized into two main cluster groups depending on the similarity matrix, i.e the most resistant and susceptible genotypes to stem and leaf rust races. The results of SCoT primers revealed 140 polymorphic and 5 monomorphic bands with 97% polymorphism. While 121 polymorphic and 74 monomorphic bands were scored for SRAP primers (99% polymorphism). The genotypes Sakha 94, Sakha 95, Beni Sweif 4, Beni Sweif 7, Sohag 4 and Sohag 5 were resistant, while Giza 160 was highly susceptible to all stem rust races at the seedling stage. However, in the adult stage, the 18 genotypes were evaluated for stem and leaf rust-resistant in two different locations, i.e. Giza and Sids. In this investigation, for the first time, the activity of CuChNp was studied and shown to have the potential to inhibit stem and leaf rust in studied Egyptian wheat genotypes. The Spraying Cu-chitosan nanoparticles showed that the incubation and latent periods were increased in treated plants of the tested genotypes. Molecular modeling revealed their activity against the stem and leaf rust development. The SRAP and SCoT markers were highly useful tools for the classification of the tested wheat genotypes, although they displayed high similarities at the morphological stage. However, Cu-chitosan nanoparticles have a critical and effective role in stem and leaf rust disease control.


Subject(s)
Antifungal Agents/chemistry , Chitosan/chemistry , Copper/chemistry , Genotype , Metal Nanoparticles/chemistry , Molecular Docking Simulation/methods , Plant Diseases/microbiology , Polymorphism, Genetic , Triticum/genetics , Antifungal Agents/pharmacology , Disease Resistance/genetics , Egypt , Genetic Markers/genetics , Plant Stems/microbiology , Puccinia/drug effects , Seedlings/microbiology , Triticum/microbiology
3.
Molecules ; 26(20)2021 10 10.
Article in English | MEDLINE | ID: mdl-34684700

ABSTRACT

Background: The present study investigated the antifungal activity and mode of action of four Olea europaea leaf extracts, Thymus vulgaris essential oil (EO), and Boswellia carteri EO against Fusarium oxysporum. Methods:Fusarium oxysporum Lactucae was detected with the internal transcribed spacer (ITS) region. The chemical compositions of chloroform and dichloromethane extracts of O. europaea leaves and T. vulgaris EO were analyzed using GC-MS analysis. In addition, a molecular docking analysis was used to identify the expected ligands of these extracts against eleven F. oxysporum proteins. Results: The nucleotide sequence of the F. oxysporum Lactucae isolate was deposited in GenBank with Accession No. MT249304.1. The T. vulgaris EO, chloroform, dichloromethane and ethanol efficiently inhibited the growth at concentrations of 75.5 and 37.75 mg/mL, whereas ethyl acetate, and B. carteri EO did not exhibit antifungal activity. The GC-MS analysis revealed that the major and most vital compounds of the T. vulgaris EO, chloroform, and dichloromethane were thymol, carvacrol, tetratriacontane, and palmitic acid. Moreover, molecular modeling revealed the activity of these compounds against F. oxysporum. Conclusions: Chloroform, dichloromethane and ethanol, olive leaf extract, and T. vulgaris EO showed a strong effect against F. oxysporum. Consequently, this represents an appropriate natural source of biological compounds for use in healthcare. In addition, homology modeling and docking analysis are the best analyses for clarifying the mechanisms of antifungal activity.


Subject(s)
Antifungal Agents/pharmacology , Boswellia/chemistry , Fusarium/drug effects , Oils, Volatile/pharmacology , Olea/chemistry , Plant Extracts/pharmacology , Thymus Plant/chemistry , Fusarium/growth & development , Microbial Sensitivity Tests/methods
4.
Phytochem Anal ; 32(5): 724-739, 2021 Sep.
Article in English | MEDLINE | ID: mdl-33314357

ABSTRACT

INTRODUCTION: Medicinal plants have been used in healthcare since time immemorial, as have their therapeutic activities and the production of plant-based medicines. OBJECTIVES: This study aims to use gene-targeted molecular markers for genetic diversity analysis of 16 medicinal plants. Besides, phytochemical analysis antibacterial and antifungal activities of some medicinal plant extracts commonly used in Egypt are compared to major compounds. METHODS: DNA-based classification of 16 medicinal species using Conserved DNA-Derived Polymorphism (CDDP) and Start Codon Targeted (SCoT) primers. Three species representing three orders (Pelargonium graveolens, Matricaria chamomilla, and Hyoscyamus muticus were analysed [high-performance liquid chromatography (HPLC), gas chromatography-mass spectrometry (GC-MS)] and evaluated for their antibacterial and antifungal activities against (Escherichia coli O157: H7 ATCC 93111, Salmonella typhimurium ATCC 14028, Methicillin-resistant Staphylococcus aureus (MRSA) ATCC 43300, Bacillus ceruse ATCC 33018, and Sclerotinia sclerotiorum in comparison with some of their antimicrobial components. RESULTS: Our results revealed 309 and 349 polymorphic bands with 100% polymorphism. Among them, 51 and 57 were unique loci for CDDP and SCoT, respectively. The 16 species were categorised into three groups depending on the similarity matrix. The results of antibacterial and antifungal activities revealed that Pelargonium oil showed significant antifungal and antibacterial activities against the tested pathogens. Gallic acid severely reduced all tested bacteria's growth, but atropine severely reduced the growth of the B. ceruse only. Molecular modelling revealed their activity against sclerotium development. CONCLUSION: The gene-targeted marker techniques were highly useful tools for the classification of the 16 medicinal plant species, despite displaying high similarities at morphological and phytochemical analyses but, have antifungal and antibacterial activities.


Subject(s)
Anti-Infective Agents , Methicillin-Resistant Staphylococcus aureus , Plants, Medicinal , Anti-Bacterial Agents/pharmacology , Antifungal Agents/pharmacology , Ascomycota , Egypt , Microbial Sensitivity Tests , Phylogeny , Phytochemicals/pharmacology , Plant Extracts
SELECTION OF CITATIONS
SEARCH DETAIL
...