Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Eur J Drug Metab Pharmacokinet ; 39(4): 231-6, 2014 Dec.
Article in English | MEDLINE | ID: mdl-24705994

ABSTRACT

The use of mefloquine (MQ) for antimalarial treatment and prophylaxis has diminished largely in response to concerns about its neurologic side effects. An analog campaign designed to maintain the efficacy of MQ while minimizing blood-brain barrier (BBB) penetration has resulted in the synthesis of a prodrug with comparable-to-superior in vivo efficacy versus mefloquine in a P. berghei mouse model while exhibiting a sixfold reduction in CNS drug levels. The prodrug, WR319670, performed poorly compared to MQ in in vitro efficacy assays, but had promising in vitro permeability in an MDCK-MDR1 cell line BBB permeability screen. Its metabolite, WR308245, exhibited high predicted BBB penetration with excellent in vitro efficacy. Both WR319670 and WR308245 cured 5/5 animals in separate in vivo efficacy studies. The in vivo efficacy of WR319670 was thought to be due to the formation of a more active metabolite, specifically WR308245. This was supported by pharmacokinetics studies in non-infected mice, which showed that both IV and oral administration of WR319670 produced essentially identical levels of WR319670 and WR308245 in both plasma and brain samples at all time points. In these studies, the levels of WR308245 in the brain were 1/4 and 1/6 that of MQ in similar IV and oral studies, respectively. These data show that the use of WR319670 as an antimalarial prodrug was able to maintain efficacy in in vivo efficacy screens, while significantly lowering overall penetration of drug and metabolites across the BBB.


Subject(s)
Antimalarials/pharmacokinetics , Blood-Brain Barrier , Mefloquine/analogs & derivatives , Prodrugs/pharmacokinetics , Animals , Antimalarials/pharmacology , Male , Mefloquine/pharmacokinetics , Mefloquine/pharmacology , Mice , Mice, Inbred ICR , Prodrugs/pharmacology
2.
Nanomedicine ; 10(1): 57-65, 2014 Jan.
Article in English | MEDLINE | ID: mdl-23891618

ABSTRACT

Decoquinate has potent activity against both Plasmodium hepatic development and red cell replication when tested in vitro. Decoquinate, however, is practically insoluble in water. To achieve its maximal in vivo efficacy, we generated nanoparticle formulations of decoquinate with a mean particle size less than 400 nm. Three separate preparations at doses of decoquinate 0.5-5 mg/kg were examined in mice infected with Plasmodium berghei. Oral administration of nanoparticle decoquinate at a dose of 1.25 mg/kg effectively inhibited the liver-stage parasite growth and provided complete causal prophylactic protection. This efficacy is 15 fold greater than that observed for microparticle decoquinate, which requires minimal dose of 20 mg/kg for the same inhibitory effect. Further in vitro studies utilizing dose-response assays revealed that decoquinate nanoformulation was substantially more potent than decoquinate microsuspension in killing both liver and blood stage malarial parasites, proving its potential for therapeutic development. FROM THE CLINICAL EDITOR: In this study, a nanoparticle formulation of decoquinate is shown to have superior bioavailability and efficacy in a mouse model of malaria, paving the way to the development of novel, potentially less toxic and more effective therapeutics to combat a disease that still has an enormous impact on a global scale despite the available partially effective therapies.


Subject(s)
Antimalarials/administration & dosage , Decoquinate/administration & dosage , Malaria, Falciparum/drug therapy , Nanoparticles/administration & dosage , Administration, Oral , Animals , Antimalarials/chemistry , Decoquinate/chemistry , Humans , Liver/drug effects , Liver/parasitology , Malaria, Falciparum/parasitology , Mice , Nanoparticles/chemistry , Plasmodium berghei/drug effects
3.
Malar Res Treat ; 2013: 769234, 2013.
Article in English | MEDLINE | ID: mdl-23766925

ABSTRACT

Decoquinate (DQ) is highly effective at killing malaria parasites in vitro; however, it is extremely insoluble in water. In this study, solid dispersion method was used for DQ formulation which created a suitable physical form of DQ in aqueous phase for particle manipulation. Among many polymers and surfactants tested, polyvinylpyrrolidone 10, a polymer, and L- α -phosphatidylcholine or polysorbate, two surfactants, were chosen as DQ formulation components. The formulation particles were reduced to a mean size between 200 to 400 nm, which was stable in aqueous medium for at least three weeks. Pharmacokinetic (PK) studies showed that compared to DQ microparticle suspension, a nanoparticle formulation orally dosed to mice showed a 14.47-fold increase in area under the curve (AUC) of DQ plasma concentration and a 4.53-fold increase in AUC of DQ liver distribution. WR 299666, a poorly water-soluble compound with antimalarial activity, was also tested and successfully made into nanoparticle formulation without undergoing solid dispersion procedure. We concluded that nanoparticles generated by using appropriate formulation components and sufficient particle size reduction significantly increased the bioavailability of DQ and could potentially turn this antimalarial agent to a therapeutic drug.

SELECTION OF CITATIONS
SEARCH DETAIL
...