Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 48
Filter
1.
J Fungi (Basel) ; 10(4)2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38667940

ABSTRACT

In this study, molecular typing using Randomly Amplified Polymorphic DNA (RAPD-PCR) was conducted on 16 original isolates of Metarhizium acridum obtained from locusts (Schistocerca piceifrons ssp. piceifrons.) in Mexico (MX). The analysis included reference strains of the genus Metarhizium sourced from various geographical regions. The isolates were identified by phenotypic (macro and micromorphology) and genotypic methods (RAPD-PCR and Amplified Fragment Length Polymorphisms (AFLP), through a multidimensional analysis of principal coordinates (PCoA) and a minimum spanning network (MST). Subsequently, Sequences-Characterized Amplified Region (SCAR) markers were developed for the molecular detection of M. acridum, these markers were chosen from polymorphic patterns obtained with 14 primers via RAPD-PCR. Phenotypic and genotypic characterization identified the MX isolates as M. acridum. Of all the polymorphic patterns obtained, only OPA04 and OPA05 were chosen, which presented species-specific bands for M. acridum, and further utilized to create SCAR markers through cloning and sequencing of the specific bands. The specificity of these two markers was confirmed via Southern hybridization. The SCAR markers (Ma-160OPA-05 and Ma-151OPA-04) exhibit remarkable sensitivity, detecting down to less than 0.1 ng, as well as high specificity, as evidenced by their inability to cross-amplify or generate amplification with DNAs from other strains of Metarhizium (as Metarhizium anisopliae) or different genera of entomopathogenic fungi (Cordyceps fumosorosea and Akanthomyces lecanii). These SCAR markers yield readily detectable results, showcasing high reproducibility. They serve as a valuable tool, especially in field applications.

2.
Life (Basel) ; 13(11)2023 Oct 24.
Article in English | MEDLINE | ID: mdl-38004249

ABSTRACT

Coccidioidomycosis, caused by Coccidioides immitis and C. posadasii, causes significant morbidity and mortality, both in immunocompetent and immunocompromised people, mainly in endemic areas. The present work analyzed its epidemiology, diagnostic methods, and treatment by reviewing clinical cases published from 1950 to 2021. Fifty-nine articles were included, corresponding to 275 clinical cases. The results showed a higher incidence of coccidioidomycosis in the male gender than the female gender. The most affected age group was 31-40 years, and the most reported clinical presentation was disseminated with greater involvement in cutaneous and subcutaneous tissue, followed by the CNS, bone system, and peritoneum. The species most frequently reported was C. immitis. The most used treatment was azoles, followed by their combination with amphotericin B, monotherapy with amphotericin B, and alternative medicine. This work shows that epidemiological data outside the USA are still scarce. Serological tests are the preferred diagnostic method in daily medical practice, and cultures remain the gold standard. The treatment for coccidioidomycosis is ketoconazole and amphotericin B, individually or in combination.

3.
Pathogens ; 12(5)2023 May 05.
Article in English | MEDLINE | ID: mdl-37242351

ABSTRACT

Histoplasmosis is one of the systemic mycoses that can involve the Central Nervous System (CNS), and it is caused by the dimorphic ascomycete species of the Histoplasma capsulatum complex. Once in the CNS, this pathogen causes life-threatening injuries that are associated with clinical manifestations of meningitis, focal lesions (abscesses, histoplasmomas), and spinal cord injuries. The present review provides updated data and highlights a particular vision regarding this mycosis and its causative agent, as well as its epidemiology, clinical forms, pathogenesis, diagnosis, and therapy, focusing on the CNS.

4.
J Fungi (Basel) ; 9(4)2023 Apr 11.
Article in English | MEDLINE | ID: mdl-37108916

ABSTRACT

Dermatophytes are fungi included in the genera Trichophyton, Microsporum, Epidermophyton, Nannizzia, Paraphyton, Lophophyton, and Arthroderma. Molecular techniques have contributed to faster and more precise identification, allowing significant advances in phylogenetic studies. This work aimed to identify clinical isolates of dermatophytes through phenotypic (macro- and micromorphology and conidia size) and genotypic methods (sequences of ITS regions, genes of ß tubulin (BT2), and elongation factor α (Tef-1α)) and determine the phylogenetic relationships between isolates. Ninety-four dermatophyte isolates from Costa Rica, Guatemala, Honduras, Mexico, and the Dominican Republic were studied. The isolates presented macro- and micromorphology and conidia size described for the genera Trichophyton, Microsporum, and Epidermophyton. Genotypic analysis classified the isolates into the genera Trichophyton (63.8%), Nannizzia (25.5%), Arthroderma (9.6%), and Epidermophyton (1.1%). The most frequent species were T. rubrum (26 isolates, 27.6%), T. interdigitale (26 isolates, 27.6%), and N. incurvata (11 isolates, 11.7%), N. gypsea and A. otae (nine isolates, 9.6%), among others. The genotypic methods clarified the taxonomic status of closely related species. For instance, the ITS and BT2 markers of T. rubrum/T. violaceum did not differ but the Tef-1α gene did. On the other hand, the three markers differed in T. equinum/T. tonsurans. Therefore, the ITS, BT2, and Tef-1α genes are useful for typing in phylogenetic analyses of dermatophytes, with Tef-1α being the most informative locus. It should be noted that isolate MM-474 was identified as T. tonsurans when using ITS and Tef-1α, but when using BT2, it was identified as T. rubrum. On the other hand, no significant difference was found when comparing the methods for constructing phylogenies, as the topologies were similar.

5.
Pathogens ; 11(11)2022 Oct 25.
Article in English | MEDLINE | ID: mdl-36364979

ABSTRACT

COVID-19-associated pulmonary aspergillosis (CAPA) has had a high incidence. In addition, it has been associated with prolonged hospital stays, as well as several predisposing risk factors, such as fungal factors (nosocomial organism, the size of the conidia, and the ability of the Aspergillus spp. of colonizing the respiratory tract), environmental factors (remodeling in hospitals, use of air conditioning and negative pressure in intensive care units), comorbidities, and immunosuppressive therapies. In addition to these factors, SARS-CoV-2 per se is associated with significant dysfunction of the patient's immune system, involving both innate and acquired immunity, with reduced CD4+ and CD8+ T cell counts and cytokine storm. Therefore, this review aims to identify the factors influencing the fungus so that coinfection with SARS-CoV-2 can occur. In addition, we analyze the predisposing factors in the fungus, host, and the immune response alteration due to the pathogenicity of SARS-CoV-2 that causes the development of CAPA.

6.
J Fungi (Basel) ; 8(3)2022 Mar 13.
Article in English | MEDLINE | ID: mdl-35330298

ABSTRACT

The objective of this work was to use the random amplification of the polymorphic DNA-polymerase chain reaction (RAPD-PCR) technique to select polymorphic patterns through qualitative and quantitative analyses to differentiate the species A. flavus, A. fumigatus, A. niger and A. tubingensis. Twenty-seven Aspergillus isolates from different species were typified using phenotypic (macro- and micromorphology) and genotypic (partial BenA gene sequencing) methods. Thirty-four primers were used to obtain polymorphic patterns, and with these a qualitative analysis was performed to select the primers that presented species-specific patterns to distinguish each species. For the quantitative selection, a database was built from the polymorphic patterns and used for the construction of logistic regression models; later, the model that presented the highest value of sensitivity against specificity was evaluated through ROC curves. The qualitative selection showed that the primers OPA-19, P54, 1253 and OPA-02 could differentiate the species. A quantitative analysis was carried out through logistic regression, whereby a species-specific correlation of sensitivity and specificity greater than 90% was obtained for the primers: OPC-06 with a 96.32% match to A. flavus; OPF-01 with a 100% match to A. fumigatus; OPG-13 with a 98.01% match to A. tubingensis; and OPF-07 with a 99.71% match to A. niger. The primer OPF-01 discriminated the four species as well as closely related species. The quantitative methods using the selected primers allowed discrimination between species and showed their usefulness for genotyping some of the species of medical relevance belonging to the genus Aspergillus.

7.
Vaccines (Basel) ; 10(3)2022 Mar 10.
Article in English | MEDLINE | ID: mdl-35335046

ABSTRACT

As a result of the COVID-19 pandemic, various joint efforts have been made to support the creation of vaccines. Different projects have been under development, of which some are in the clinical evaluation stage and others in are in phase III with positive results. The aim of this paper was to describe the current situation of the development and production of vaccines available to the population to facilitate future research and continue developing and proposing ideas for the benefit of the population. So, we carried out a systematic review using databases such as PubMed, ScienceDirect, SciELO, and MEDLINE, including keywords such as "vaccines," "COVID-19," and "SARS-CoV-2". We reviewed the development and production of the anti-COVID vaccine and its different platforms, the background leading to the massive development of these substances, and the most basic immune aspects for a better understanding of their physiological activity and the immune response in those who receive the vaccine. We also analyzed immunization effects in populations with any medical or physiological conditions (such as immunosuppression, people with comorbidities, and pregnancy), as well as the response to immunization with heterologous vaccines and the hybrid immunity (the combination of natural immunity to SARS-CoV-2 with immunity generated by the vaccine). Likewise, we address the current situation in Mexico and its role in managing the vaccination process against SARS-CoV-2 at the national and international levels. There are still many clinical and molecular aspects to be described, such as the duration of active immunity and the development of immunological memory, to mention some of the most important ones. However, due to the short time since the global vaccination roll-out and that it has been progressive (not counting children and people with medical conditions), it is premature to say whether a second vaccination schedule will be necessary for the near future. Thus, it is essential to continue with health measures.

8.
Appl Environ Microbiol ; 88(7): e0201021, 2022 04 12.
Article in English | MEDLINE | ID: mdl-35262368

ABSTRACT

Histoplasmosis is a mycotic infection principally affecting pulmonary tissue; sometimes, histoplasmosis can progress into a systemic disease. This infection involves immunocompetent and immunosuppressed human and other mammalian hosts, depending on particular circumstances. Histoplasmosis infection has been documented worldwide. The infection is acquired by inhaling infective mycelial propagules of the dimorphic fungus Histoplasma capsulatum. New reports of clinical cases of histoplasmosis in extreme latitudes could be related to human social adaptations and climate changes in the world, which are creating new favorable environments for this fungus and for bats, its major natural reservoirs and dispersers. Histoplasma has been isolated from most continents, and it is considered a complex of cryptic species, consisting of various groups of isolates that differ genetically and correlate with a particular geographic distribution. Based on updated studies, Histoplasma taxonomy is adjusting to new genetic data. Here, we have suggested that Histoplasma has at least 14 phylogenetic species distributed worldwide and new genotypes that could be under deliberation. Histoplasma's geographic radiation began in South America millions of years ago when the continents were joined and the climate was favorable. For fungal spreading, the role of bats and some birds is crucial, although other natural factors could also participate.


Subject(s)
Chiroptera , Histoplasmosis , Animals , Chiroptera/microbiology , Histoplasma/genetics , Histoplasmosis/epidemiology , Histoplasmosis/microbiology , Histoplasmosis/veterinary , Humans , Lung/microbiology , Phylogeny
9.
Microorganisms ; 10(2)2022 Feb 05.
Article in English | MEDLINE | ID: mdl-35208828

ABSTRACT

Systemic candidiasis is a frequent opportunistic mycosis that can be life-threatening. Its main etiological agent is Candida albicans; however, the isolation of non-albicans Candida species has been increasing. Some of these species exhibit greater resistance to antifungals, so the rapid and specific identification of yeasts is crucial for a timely diagnosis and optimal treatment of patients. Multiple molecular assays have been developed, based mainly on polymerase chain reaction (PCR), showing high specificity and sensitivity to detect and identify Candida spp. Nevertheless, its application in diagnosis has been limited due to specialized infrastructure or methodological complexity. The objective of this study was to develop a PCR assay that detects and identifies some of the most common pathogenic Candida species and evaluate their diagnostic utility in blood samples and bronchial lavage. A pair of oligonucleotides was designed, CandF and CandR, based on sequence analysis of the 18S-ITS1-5.8S-ITS2-28S region of the rDNA of Candida spp., deposited in GenBank. The designed oligonucleotides identified C. albicans, C. glabrata, C. tropicalis, C. parapsilosis, C. krusei/Pichia kudriazevii, C. guilliermondii/Meyerozyma guilliermondii, C. lusitaniae/Clavispora lusitaniae, and C. dubliniensis using simplex PCR based on the amplicon size, showing a detection limit of 10 pg/µL of DNA or 103 yeasts/mL. Based on cultures as the gold standard, it was determined that the sensitivity (73.9%), specificity (96.3%), and the positive (94.4%) and negative (81.2%) predictive values of the PCR assay with the designed oligonucleotides justify their reliable use in diagnosis.

10.
J Fungi (Basel) ; 7(7)2021 Jun 30.
Article in English | MEDLINE | ID: mdl-34209122

ABSTRACT

Histoplasma capsulatum is a dimorphic fungus associated with respiratory and systemic infections in mammalian hosts that have inhaled infective mycelial propagules. A phylogenetic reconstruction of this pathogen, using partial sequences of arf, H-anti, ole1, and tub1 protein-coding genes, proposed that H. capsulatum has at least 11 phylogenetic species, highlighting a clade (BAC1) comprising three H. capsulatum isolates from infected bats captured in Mexico. Here, relationships for each individual locus and the concatenated coding regions of these genes were inferred using parsimony, maximum likelihood, and Bayesian inference methods. Coalescent-based analyses, a concatenated sequence-types (CSTs) network, and nucleotide diversities were also evaluated. The results suggest that six H. capsulatum isolates from the migratory bat Tadarida brasiliensis together with one isolate from a Mormoops megalophylla bat support a NAm 3 clade, replacing the formerly reported BAC1 clade. In addition, three H. capsulatum isolates from T. brasiliensis were classified as lineages. The concatenated sequence analyses and the CSTs network validate these findings, suggesting that NAm 3 is related to the North American class 2 clade and that both clades could share a recent common ancestor. Our results provide original information on the geographic distribution, genetic diversity, and host specificity of H. capsulatum.

11.
Rev Iberoam Micol ; 38(3): 119-124, 2021.
Article in English | MEDLINE | ID: mdl-33839018

ABSTRACT

BACKGROUND: The molecular reclassification of the order Trichosporonales placed the medically relevant Trichosporon species into three genera of the family Trichosporonaceae: Cutaneotrichosporon, Trichosporon, and Apiotrichum. From the clinical and epidemiological standpoint, it is important to identify any species of the family Trichosporonaceae because they present different antifungal susceptibility profiles. In Mexico, little is known about trichosporonosis etiology because the fungi are identified through phenotypic methods. AIMS: To identify at a molecular level 12 yeast isolates morfologically compatible with Trichosporon, obtained from patients with superficial infections. METHODS: The yeast isolates were obtained from patients with white piedra, onychomycosis, and hand and foot dermatomycosis, and were identified morphologically and genotypically (sequencing of the IGS1 region and phylogenetic analysis using the Maximum Likelihood Method). The phylogenetic analysis included 40 yeast sequences from the order Trichosporonales and one from Cryptococcus neoformans as outgroup. RESULTS: Based on the molecular analysis, we identified three (25%) Trichosporon inkin isolates, two (16.7%) Trichosporon asteroides, two (16.7%) Cutaneotrichosporon mucoides, and one each (8.3%) of Trichosporon aquatile, Trichosporon asahii, Apiotrichum montevideense, Cutaneotrichosporon cutaneum, and Cutaneotrichosporon jirovecii. CONCLUSIONS: The molecular characterization of the isolates showed a broad diversity of species within the order Trichosporonales, particularly among onychomycosis. It is essential to identify these yeasts at the species level to delve into their epidemiology.


Subject(s)
Cryptococcus neoformans , Trichosporon , Basidiomycota , Humans , Phylogeny , Trichosporon/genetics
12.
Microorganisms ; 9(1)2021 Jan 06.
Article in English | MEDLINE | ID: mdl-33418970

ABSTRACT

Aspergillus is one of the most common fungal genera found indoors; it is important because it can cause a wide range of diseases in humans. Aspergillus species identification is based on a combination of morphological, physiological, and molecular methods. However, molecular methodologies have rarely been used for the identification of environmental isolates of Aspergillus in Cuba. Therefore, the objective of this work was to identify the species of the genus Aspergillus obtained from houses in Havana, Cuba, through the construction of phylogeny from a partial sequence of the benA gene region, and to analyze the diversity and richness of Aspergillus in the studied municipalities. Isolates of Aspergillus spp. included in this study presented the typical macro- and micromorphology described for the genus. According to this polyphasic characterization, A. niger, A. flavus, A. welwitschiae, A. heteromorphus, A. sydowii, A. tamarii, A. fumigatus, A. clavatus, and A. tubingensis were the most abundant species. Most of the identified species constitute new records for outdoor and indoor environments in Cuba and contribute to the knowledge of fungal biodiversity in the country. These results constitute an alert for the health authorities of the country, since prolonged exposure of the inhabitants to Aspergillus spores can cause severe persistent asthma, among other diseases.

13.
Microorganisms ; 8(5)2020 May 08.
Article in English | MEDLINE | ID: mdl-32397318

ABSTRACT

The CSP (cell surface protein) microsatellite marker is useful for typing Aspergillus fumigatus isolates and determining relationships at the subpopulation level because it has shown high discriminatory power. In the present study, 90 A. fumigatus isolates from Mexico (MX), Argentina (AR), France (FR), and Peru (PE) were identified through a phylogenetic analysis using the benA gene fragment and were typed with the CSP microsatellite, and the types were identified using the nomenclature recommended in the literature. Genetic variability was analyzed through haplotype diversity, nucleotide diversity, polymorphic sites, and nucleotide differences between pairs of sequences. The population structure was evaluated using the Tajima's D statistic. No new CSP types were recorded in the MX, FR, and PE isolates, while in the AR isolates, two new CSP types were identified (t25 and t26). The most common CSP types in the studied populations were t01, t02, t03, and t04A; these results are consistent with findings in other countries. In addition, the genetic diversity parameters we obtained revealed that the greatest genetic diversity was found in the MX population, followed by AR and FR. No population structure was identified among the isolates studied.

14.
Braz. j. infect. dis ; 24(1): 44-50, Feb. 2020. tab, graf
Article in English | LILACS | ID: biblio-1089329

ABSTRACT

ABSTRACT The yeast phase of 22 Histoplasma capsulatum clinical isolates from Mexico, Argentina, Colombia, and Guatemala and three reference strains, one from Panama and two from the United States of America (USA), were screened for thermosensitivity characteristics using different analyses. Growth curves at 0, 3, 6, 12, 24, and 30 h of incubation at 37 and 40 °C, the growth inhibition percentage at 40 °C, and the doubling time at 37 and 40 °C were determined for all yeasts studied. Most of the isolates examined exhibited thermotolerant phenotypes at 40 °C, whereas a thermosensitive phenotype at 40 °C was only detected in the Downs reference strain from the USA. Growth inhibition values lower than 33.8% supported the predominance of the thermotolerant phenotype at 40 °C. The doubling time means found for the different isolates were 5.14 h ± 1.47 h at 37 °C and 5.55 h ± 1.87 h at 40 °C. This is the first report to underscore the predominance of thermotolerant and delayed doubling time phenotypes in H. capsulatum clinical isolates from different regions of Latin America.


Subject(s)
Thermotolerance/physiology , Histoplasma/isolation & purification , Histoplasma/growth & development , Phenotype , Phylogeny , Reference Values , Temperature , Time Factors , Histoplasma/genetics , Histoplasmosis/microbiology , Latin America
15.
Braz J Infect Dis ; 24(1): 44-50, 2020.
Article in English | MEDLINE | ID: mdl-31987782

ABSTRACT

The yeast phase of 22 Histoplasma capsulatum clinical isolates from Mexico, Argentina, Colombia, and Guatemala and three reference strains, one from Panama and two from the United States of America (USA), were screened for thermosensitivity characteristics using different analyses. Growth curves at 0, 3, 6, 12, 24, and 30 h of incubation at 37 and 40 °C, the growth inhibition percentage at 40 °C, and the doubling time at 37 and 40 °C were determined for all yeasts studied. Most of the isolates examined exhibited thermotolerant phenotypes at 40 °C, whereas a thermosensitive phenotype at 40 °C was only detected in the Downs reference strain from the USA. Growth inhibition values lower than 33.8% supported the predominance of the thermotolerant phenotype at 40 °C. The doubling time means found for the different isolates were 5.14 h ±â€¯1.47 h at 37 °C and 5.55 h ±â€¯1.87 h at 40 °C. This is the first report to underscore the predominance of thermotolerant and delayed doubling time phenotypes in H. capsulatum clinical isolates from different regions of Latin America.


Subject(s)
Histoplasma/growth & development , Histoplasma/isolation & purification , Thermotolerance/physiology , Histoplasma/genetics , Histoplasmosis/microbiology , Latin America , Phenotype , Phylogeny , Reference Values , Temperature , Time Factors
16.
Braz J Infect Dis ; 23(5): 322-330, 2019.
Article in English | MEDLINE | ID: mdl-31539511

ABSTRACT

At present, there is no standardized marker that is routinely used in clinical laboratories to diagnose coccidioidomycosis. Thus, the goals of this study were to obtain a sequence characterized amplified region (SCAR) marker for the identification of Coccidioides spp., evaluate its specificity and sensitivity in fungal DNA-spiked blood and sputum samples, and compare it with previously described molecular markers. Specific amplified fragment length polymorphism (AFLP) amplicons for Coccidioides immitis and Coccidioides posadasii were cloned into the vector pGEM® -T Easy vector and sequenced to develop a SCAR marker. Oligonucleotides were designed to identify Coccidioides spp. by polymerase chain reaction (PCR), and the specificity and sensitivity of these oligonucleotides were tested with the DNA from related pathogens. The specificity and sensitivity of the SCAR marker was evaluated with blood and sputum samples spiked with Coccidioides DNA and compared with other previously described markers (621, GAC2, and Ag2/PRA). In addition, the conditions for its use were established using biological samples. A specific marker named SCAR300 was obtained to identify Coccidioides spp. that exhibited good sensitivity and specificity. The results showed that all of the markers tested in this study can identify Coccidioides spp. However, the SCAR300 and 621 markers were the most sensitive, whereas the SCAR300 marker was the most specific. Thus, the SCAR300 marker is a useful tool to identify Coccidioides spp.


Subject(s)
Amplified Fragment Length Polymorphism Analysis , Coccidioides/genetics , Coccidioidomycosis/diagnosis , DNA, Fungal/genetics , Base Sequence , Coccidioides/classification , Coccidioides/isolation & purification , Coccidioidomycosis/microbiology , Humans , Polymerase Chain Reaction , Polymorphism, Genetic , Sensitivity and Specificity
17.
Rev Inst Med Trop Sao Paulo ; 61: e37, 2019 Aug 08.
Article in English | MEDLINE | ID: mdl-31411267

ABSTRACT

Candida glabrata complex includes three species identified through molecular biology methods: C. glabrata sensu stricto , C. nivariensis and C. bracarensis . In Mexico, the phenotypic methods are still used in the diagnosis; therefore, the presence of C. nivariensis and C. bracarensis among clinical isolates is still unknown. The aim of this study was to evaluate the utility of a multiplex PCR for the identification of the C. glabrata species complex. DNA samples from 92 clinical isolates that were previously identified through phenotypic characteristics as C. glabrata were amplified by four oligonucleotides (UNI-5.8S, GLA-f, BRA-f, and NIV-f) that generate amplicons of 397, 293 and 223-bp corresponding to C. glabrata sensu stricto , C. nivariensis , and C. bracarensis , respectively. The amplicon sequences were used to perform a phylogenetic analysis through the Maximum Likelihood method (MEGA6), including strains and reference sequences of species belonging to C. glabrata complex. In addition, recombination and linkage disequilibrium were estimated (DnaSP version 5.0) for C. glabrata sensu stricto isolate s . Eighty-eight isolates generated a 397-bp fragment and only in one isolate a 223-bp amplicon was observed. In the phylogenetic tree, the sequences of 397-bp were grouped with C. glabrata reference sequences , and the sequence of 223-bp was grouped with C. bracarensis reference sequences, corroborating the PCR identification. The number of recombination events for the isolates of C. glabrata sensu stricto was zero, suggesting a clonal population structure. Three isolates that did not amplify any of the expected fragments were identified as Saccharomyces cerevisiae through the sequencing of the D1/D2 domain region within the 28S rDNA gene. The multiplex PCR is a fast, cost-effective and reliable tool that can be used in clinical laboratories to identify C. glabrata complex species.


Subject(s)
Candida glabrata/genetics , Candidiasis/microbiology , DNA, Fungal/genetics , Mycological Typing Techniques/methods , Candida glabrata/isolation & purification , DNA, Ribosomal/genetics , DNA, Ribosomal Spacer/genetics , Female , Humans , Male , Mexico , Multiplex Polymerase Chain Reaction , Phylogeny , Sequence Analysis, DNA
18.
Am J Trop Med Hyg ; 101(3): 716-723, 2019 09.
Article in English | MEDLINE | ID: mdl-31287042

ABSTRACT

This article describes, for the first time, the role of the nasal mucosa (NM) as the initial site for the Histoplasma capsulatum mycelial-to-yeast transition. The results highlight that yeasts may arrive to the cervical lymph nodes (CLN) via phagocytes. Bats and mice were intranasally infected with H. capsulatum mycelial propagules and they were killed 10, 20, and 40 minutes and 1, 2, and 3 hours after infection. The NM and the CLN were monitored for fungal presence. Yeasts compatible with H. capsulatum were detected within the NM and the CLN dendritic cells (DCs) 2-3 hours postinfection, using immunohistochemistry. Histoplasma capsulatum was re-isolated by culturing at 28°C from the CLN of both mammalian hosts 2-3 hours postinfection. Reverse transcription-polymerase chain reaction assays were designed to identify fungal dimorphism, using mycelial-specific (MS8) and yeast-specific (YPS3) gene expression. This strategy supported fast fungal dimorphism in vivo, which began in the NM 1 hour postinfection (a time point when MS8 and YPS3 genes were expressed) and it was completed at 3 hours (a time point when only the YPS3 transcripts were detected) in both bats and mice. The presence of intracellular yeasts in the nasal-associated lymphoid tissue (NALT), in the NM nonassociated with the NALT, and within the interdigitating DCs of the CLN suggests early fungal dissemination via the lymph vessels.


Subject(s)
Adaptation, Physiological , Chiroptera/microbiology , Histoplasma/physiology , Mycelium/physiology , Nasal Mucosa/microbiology , Animals , Dendritic Cells/microbiology , Female , Histoplasma/genetics , Lymph Nodes/microbiology , Mice , Mice, Inbred C57BL , Mycelium/genetics , Phagocytosis , Respiratory Tract Infections/microbiology
19.
Rev Inst Med Trop Sao Paulo ; 61: e26, 2019 May 06.
Article in English | MEDLINE | ID: mdl-31066752

ABSTRACT

The aim of this study was genotypically characterize Leptospira sp. clinical isolates from Mexico which were previously identified as Leptospira interrogans serovar Pomona (POM) by phenotypic methods. The Random Amplified Polymorphic DNA (RAPD) method was used for DNA amplification with five oligonucleotides. A dendrogram was constructed using the Unweighted Pair Group Method Analysis (UPGMA). During the genotypic characterization, the studied isolates constituted a group which was associated with the reference strain L. interrogans serovar Pomona. The Minimum Spanning Networks (MST) analysis revealed the same cluster between Mexican isolates and the reference strain POM. Clinical isolates identified as L. interrogans serovar POM have a clonal reproduction type, suggesting that this clone is distributed in different regions of Mexico.


Subject(s)
Leptospira interrogans/genetics , Leptospirosis/microbiology , Chronic Disease , DNA, Bacterial/genetics , Genotype , Humans , Mexico , Random Amplified Polymorphic DNA Technique
20.
Molecules ; 23(12)2018 Nov 30.
Article in English | MEDLINE | ID: mdl-30513599

ABSTRACT

Antigenic fractions of 100, 50, 37, and 28 kDa obtained through the SDS-PAGE method that were more frequently recognized by anti-Coccidioides antibodies in the sera of coccidioidomycosis patients were selected using western blotting. Subsequently, these bands were sequenced, and the obtained proteins were analysed by BLAST to choose peptides specific for Coccidioides spp. from among the shared aligned sequences of related fungi. A peptide specific for C. immitis was selected from the "GPI anchored serine-threonine rich protein OS C. immitis", while from the "uncharacterized protein of C. immitis", we selected a peptide for C. immitis and C. posadasii. These proteins arose from the 100 kDa antigenic fraction. From the protein "fatty acid amide hydrolase 1 of C. posadasii" that was identified from the 50 kDa antigenic fraction, a peptide was selected that recognized C. immitis and C. posadasii. In addition, the analysis of all the peptides (353) of each of the assembled proteins showed that only 35 had 100% identity with proteins of C. immitis and C. posadasii, one had 100% identity with only C. immitis, and one had 100% identity with only C. posadasii. These peptides can be used as diagnostic reagents, vaccines, and antifungals.


Subject(s)
Antigens, Fungal/isolation & purification , Blotting, Western/methods , Coccidioides/immunology , Coccidioidomycosis/blood , Coccidioidomycosis/immunology , Electrophoresis, Polyacrylamide Gel/methods , Peptides/isolation & purification , Adult , Aged , Amino Acid Sequence , Antigens, Fungal/chemistry , Child , Coccidioides/isolation & purification , Female , Humans , Male , Middle Aged , Peptides/chemistry , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...