Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Plants (Basel) ; 13(6)2024 Mar 11.
Article in English | MEDLINE | ID: mdl-38592776

ABSTRACT

This study aimed to explore alternative substrates for growing forest species using eucalyptus bark. It evaluated the potential of extracted Eucalyptus globulus fiber bark as a substitute for commercial growing media such as coconut fiber, moss, peat, and compost pine. We determined the physicochemical parameters of the growing media, the germination rate, and the mean fresh and dry weights of seedlings. We used the Munoo-Liisa Vitality Index (MLVI) test to evaluate the phytotoxicity of the bark alone and when mixed with commercial substrates. Generally, the best mixture for seed growth was 75% extracted eucalyptus bark fiber and 25% commercial substrates. In particular, the 75E-25P (peat) mixture is a promising substitute for seedling growth of Pinus radiata, achieving up to 3-times higher MLVI than the control peat alone. For Quillaja saponaria, the best growth substrate was the 50E-50C (coconut fiber) mixture, which had the most significant MLVI values (127%). We added chitosan and alginate-encapsulated fulvic acid phytostimulants to improve the performance of the substrate mixtures. The fulvic acid, encapsulated or not, significantly improved MLVI values in Q. saponaria species and P. radiata in concentrations between 0.05 and 0.1% w/v. This study suggests that mixtures with higher levels of extracted fiber are suitable for growing forest species, thus promoting the application of circular economy principles in forestry.

2.
Polymers (Basel) ; 14(3)2022 Jan 21.
Article in English | MEDLINE | ID: mdl-35160413

ABSTRACT

Cellulose nanocrystals (CNCs) are attractive materials due to their renewable nature, high surface-to-volume ratio, crystallinity, biodegradability, anisotropic performance, or available hydroxyl groups. However, their source and obtaining pathway determine their subsequent performance. This work evaluates cellulose nanocrystals (CNCs) obtained from four different eucalyptus species by acid hydrolysis, i.e., E. benthamii, E. globulus, E. smithii, and the hybrid En × Eg. During preparation, CNCs incorporated sulphate groups to their structures, which highlighted dissimilar reactivities, as given by the calculated sulphate index (0.21, 0.97, 0.73 and 0.85, respectively). Although the impact of the incorporation of sulphate groups on the crystalline structure was committed, changes in the hydrophilicity and water retention ability or thermal stability were observed. These effects were also corroborated by the apparent activation energy during thermal decomposition obtained through kinetic analysis. Low-sulphated CNCs (E. benthamii) involved hints of a more crystalline structure along with less water retention ability, higher thermal stability, and greater average apparent activation energy (233 kJ·mol-1) during decomposition. Conversely, the high-sulphated species (E. globulus) involved higher reactivity during preparation that endorsed a little greater water retention ability and lower thermal stability, with subsequently less average apparent activation energy (185 kJ·mol-1). The E. smithii (212 kJ·mol-1) and En × Eg (196 kJ·mol-1) showed an intermediate behavior according to their sulphate index.

3.
Biomolecules ; 11(4)2021 03 29.
Article in English | MEDLINE | ID: mdl-33805256

ABSTRACT

The objective of this study was to investigate structural changes and lignin redistribution in Eucalyptus globulus pre-treated by steam explosion under different degrees of severity (S0), in order to evaluate their effect on cellulose accessibility by enzymatic hydrolysis. Approximately 87.7% to 98.5% of original glucans were retained in the pre-treated material. Glucose yields after the enzymatic hydrolysis of pre-treated material improved from 19.4% to 85.1% when S0 was increased from 8.53 to 10.42. One of the main reasons for the increase in glucose yield was the redistribution of lignin as micro-particles were deposited on the surface and interior of the fibre cell wall. This information was confirmed by laser scanning confocal fluorescence and FT-IR imaging; these microscopic techniques show changes in the physical and chemical characteristics of pre-treated fibres. In addition, the results allowed the construction of an explanatory model for microscale understanding of the enzymatic accessibility mechanism in the pre-treated lignocellulose.


Subject(s)
Eucalyptus/metabolism , Lignin/metabolism , Cellulase/metabolism , Hydrolysis , Lignin/chemistry , Microscopy, Confocal , Principal Component Analysis , Spectroscopy, Fourier Transform Infrared , Temperature
4.
Nanomaterials (Basel) ; 10(9)2020 Sep 08.
Article in English | MEDLINE | ID: mdl-32911746

ABSTRACT

Kraft pulp cellulose was hydrolyzed using sulfuric acid, under different thermophysical conditions of temperature, time, pulp concentration, and sonication time. The experimental design revealed the effect of these conditions and their interaction on the hydrolysis yield obtained. In addition, the top five cellulose nanocrystals (CNCs) yields from this experiment design were analyzed. The results obtained indicated that CNCs possess a morphology that can be described as individualized rod particles, with average diameters less than 50 nm and different size distribution. In the analysis of CNCs features, significant Pearson correlations were established between the crystallinity of the CNC, CNC yield, and interplanar crystallites distance (Δd/d). The thermogravimetric (DTG) profiles exhibited two CNCs degradation stages, where the second stage CNCs degradation showed a significative correlation with CNC sulfur content. In our analysis, the crystallographic parameters exhibited a correlation with the mechanical behavior of the CNC, since the potential variation between the distances of the crystalline planes is related to the stress and deformation present in the crystallites of CNCs. This study provides new knowledge regarding CNCs, further enhancing information for CNC-based industries and the processability of CNCs for the development of new materials.

SELECTION OF CITATIONS
SEARCH DETAIL
...