Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Biomed Pharmacother ; 170: 115977, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38056237

ABSTRACT

Warfarin, an oral anticoagulant, has been used for decades to prevent thromboembolic events. The complex interplay between CYP2C9 and VKORC1 genotypes on warfarin PK and PD properties is not fully understood in special sub-groups of patients. This study aimed to externally validate a population pharmacokinetic/pharmacodynamic (PK/PD) model for the effect of warfarin on international normalized ratio (INR) and to evaluate optimal dosing strategies based on the selected covariates in Caribbean Hispanic patients. INR, and CYP2C9 and VKORC1 genotypes from 138 patients were used to develop a population PK/PD model in NONMEM. The structural definition of a previously published PD model for INR was implemented. A numerical evaluation of the parameter-covariate relationship was performed. Simulations were conducted to determine optimal dosing strategies for each genotype combinations, focusing on achieving therapeutic INR levels. Findings revealed elevated IC50 for G/G, G/A, and A/A VKORC1 haplotypes (11.76, 10.49, and 9.22 mg/L, respectively), in this population compared to previous reports. The model-guided dosing analysis recommended daily warfarin doses of 3-5 mg for most genotypes to maintain desired INR levels, although subjects with combination of CYP2C9 and VKORC1 genotypes * 2/* 2-, * 2/* 3- and * 2/* 5-A/A would require only 1 mg daily. This research underscores the potential of population PK/PD modeling to inform personalized warfarin dosing in populations typically underrepresented in clinical studies, potentially leading to improved treatment outcomes and patient safety. By integrating genetic factors and clinical data, this approach could pave the way for more effective and tailored anticoagulation therapy in diverse patient groups.


Subject(s)
Aryl Hydrocarbon Hydroxylases , Warfarin , Humans , Anticoagulants/pharmacology , Cytochrome P-450 CYP2C9/genetics , Genotype , Hispanic or Latino/genetics , Vitamin K Epoxide Reductases/genetics , Caribbean People
2.
Drug Metab Pers Ther ; 2020 Aug 19.
Article in English | MEDLINE | ID: mdl-32809952

ABSTRACT

Objectives The inter-individual variability of warfarin dosing has been linked to genetic polymorphisms. This study was aimed at performing genotype-driven pharmacokinetic (PK) simulations to predict warfarin levels in Puerto Ricans. Methods Analysis of each individual dataset was performed by one-compartmental modeling using WinNonlin®v6.4. The k e of warfarin given a cytochrome P450 2C9 (CYP2C9) genotype ranged from 0.0189 to 0.0075 h-1. K a and V d parameters were taken from literature. Data from 128 subjects were divided into two groups (i.e., wild-types and carriers) and statistical analyses of PK parameters were performed by unpaired t-tests. Results In the carrier group (n=64), 53 subjects were single-carriers and 11 double-carriers (i.e., *2/*2, *2/*3, *2/*5, *3/*5, and *3/*8). The mean peak concentration (Cmax) was higher for wild-type (0.36±0.12 vs. 0.32±0.14 mg/L). Likewise, the average clearance (CL) parameter was faster among non-carriers (0.22±0.03 vs. 0.17±0.05 L/h; p=0.0001), with also lower area under the curve (AUC) when compared to carriers (20.43±6.97 vs. 24.78±11.26 h mg/L; p=0.025). Statistical analysis revealed a significant difference between groups with regard to AUC and CL, but not for Cmax. This can be explained by the variation of k e across different genotypes. Conclusions The results provided useful information for warfarin dosing predictions that take into consideration important individual PK and genotyping data.

3.
Drug Metab Pers Ther ; 35(4)2020 08 18.
Article in English | MEDLINE | ID: mdl-34704696

ABSTRACT

OBJECTIVES: The inter-individual variability of warfarin dosing has been linked to genetic polymorphisms. This study was aimed at performing genotype-driven pharmacokinetic (PK) simulations to predict warfarin levels in Puerto Ricans. METHODS: Analysis of each individual dataset was performed by one-compartmental modeling using WinNonlin®v6.4. The ke of warfarin given a cytochrome P450 2C9 (CYP2C9) genotype ranged from 0.0189 to 0.0075 h-1. Ka and Vd parameters were taken from literature. Data from 128 subjects were divided into two groups (i.e., wild-types and carriers) and statistical analyses of PK parameters were performed by unpaired t-tests. RESULTS: In the carrier group (n=64), 53 subjects were single-carriers and 11 double-carriers (i.e., *2/*2, *2/*3, *2/*5, *3/*5, and *3/*8). The mean peak concentration (Cmax) was higher for wild-type (0.36±0.12 vs. 0.32±0.14 mg/L). Likewise, the average clearance (CL) parameter was faster among non-carriers (0.22±0.03 vs. 0.17±0.05 L/h; p=0.0001), with also lower area under the curve (AUC) when compared to carriers (20.43±6.97 vs. 24.78±11.26 h mg/L; p=0.025). Statistical analysis revealed a significant difference between groups with regard to AUC and CL, but not for Cmax. This can be explained by the variation of ke across different genotypes. CONCLUSIONS: The results provided useful information for warfarin dosing predictions that take into consideration important individual PK and genotyping data.


Subject(s)
Aryl Hydrocarbon Hydroxylases , Warfarin , Anticoagulants , Aryl Hydrocarbon Hydroxylases/genetics , Cytochrome P-450 CYP2C9/genetics , Genotype , Hispanic or Latino , Humans , Vitamin K Epoxide Reductases/genetics , Warfarin/pharmacokinetics
SELECTION OF CITATIONS
SEARCH DETAIL
...