Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Arch Microbiol ; 198(9): 847-60, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27226009

ABSTRACT

Organisms belonging to the genus Rhizobium colonize leguminous plant roots and establish a mutually beneficial symbiosis. Biofilms are structured ecosystems in which microbes are embedded in a matrix of extracellular polymeric substances, and their development is a multistep process. The biofilm formation processes of R. etli CFN42 were analyzed at an early (24-h incubation) and mature stage (72 h), comparing cells in the biofilm with cells remaining in the planktonic stage. A genome-wide microarray analysis identified 498 differentially regulated genes, implying that expression of ~8.3 % of the total R. etli gene content was altered during biofilm formation. In biofilms-attached cells, genes encoding proteins with diverse functions were overexpressed including genes involved in membrane synthesis, transport and chemotaxis, repression of flagellin synthesis, as well as surface components (particularly exopolysaccharides and lipopolysaccharides), in combination with the presence of activators or stimulators of N-acyl-homoserine lactone synthesis This suggests that R. etli is able to sense surrounding environmental conditions and accordingly regulate the transition from planktonic and biofilm growth. In contrast, planktonic cells differentially expressed genes associated with transport, motility (flagellar and twitching) and inhibition of exopolysaccharide synthesis. To our knowledge, this is the first report of nodulation and nitrogen assimilation-related genes being involved in biofilm formation in R. etli. These results contribute to the understanding of the physiological changes involved in biofilm formation by bacteria.


Subject(s)
Biofilms/growth & development , Gene Expression Regulation, Bacterial , Rhizobium etli/genetics , Transcriptome/physiology , 4-Butyrolactone/analogs & derivatives , 4-Butyrolactone/metabolism , DNA, Bacterial/analysis , Microarray Analysis , RNA, Bacterial/analysis , Rhizobium etli/physiology
2.
Microbiology (Reading) ; 149(Pt 5): 1165-1176, 2003 May.
Article in English | MEDLINE | ID: mdl-12724378

ABSTRACT

The plasmid-borne Rhizobium etli katG gene encodes a dual-function catalase-peroxidase (KatG) (EC 1.11.1.7) that is inducible and heat-labile. In contrast to other rhizobia, katG was shown to be solely responsible for catalase and peroxidase activity in R. etli. An R. etli mutant that did not express catalase activity exhibited increased sensitivity to hydrogen peroxide (H(2)O(2)). Pre-exposure to a sublethal concentration of H(2)O(2) allowed R. etli to adapt and survive subsequent exposure to higher concentrations of H(2)O(2). Based on a multiple sequence alignment with other catalase-peroxidases, it was found that the catalytic domains of the R. etli KatG protein had three large insertions, two of which were typical of KatG proteins. Like the katG gene of Escherichia coli, the R. etli katG gene was induced by H(2)O(2) and was important in sustaining the exponential growth rate. In R. etli, KatG catalase-peroxidase activity is induced eightfold in minimal medium during stationary phase. It was shown that KatG catalase-peroxidase is not essential for nodulation and nitrogen fixation in symbiosis with Phaseolus vulgaris, although bacteroid proteome analysis indicated an alternative compensatory mechanism for the oxidative protection of R. etli in symbiosis. Next to, and divergently transcribed from the catalase promoter, an ORF encoding the regulator OxyR was found; this is the first plasmid-encoded oxyR gene described so far. Additionally, the katG promoter region contained sequence motifs characteristic of OxyR binding sites, suggesting a possible regulatory mechanism for katG expression.


Subject(s)
Catalase/genetics , DNA-Binding Proteins , Plasmids , Replicon , Repressor Proteins/genetics , Rhizobium/enzymology , Transcription Factors/genetics , Amino Acid Sequence , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Catalase/metabolism , Gene Expression Regulation, Bacterial , Hydrogen Peroxide/pharmacology , Molecular Sequence Data , Nitrogen Fixation , Phaseolus/microbiology , Repressor Proteins/metabolism , Rhizobium/genetics , Rhizobium/growth & development , Sequence Analysis, DNA , Symbiosis , Transcription Factors/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL