Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
ACS Chem Neurosci ; 14(19): 3704-3713, 2023 10 04.
Article in English | MEDLINE | ID: mdl-37712589

ABSTRACT

Hundreds of proteins determine the function of synapses, and synapses define the neuronal circuits that subserve myriad brain, cognitive, and behavioral functions. It is thus necessary to precisely manipulate specific proteins at specific sub-cellular locations and times to elucidate the roles of particular proteins and synapses in brain function. We developed PHOtochemically TArgeting Chimeras (PHOTACs) as a strategy to optically degrade specific proteins with high spatial and temporal precision. PHOTACs are small molecules that, upon wavelength-selective illumination, catalyze ubiquitylation and degradation of target proteins through endogenous proteasomes. Here, we describe the design and chemical properties of a PHOTAC that targets Ca2+/calmodulin-dependent protein kinase II alpha (CaMKIIα), which is abundant and crucial for the baseline synaptic function of excitatory neurons. We validate the PHOTAC strategy, showing that the CaMKIIα-PHOTAC is effective in mouse brain tissue. Light activation of CaMKIIα-PHOTAC removed CaMKIIα from regions of the mouse hippocampus only within 25 µm of the illuminated brain surface. The optically controlled degradation decreases synaptic function within minutes of light activation, measured by the light-initiated attenuation of evoked field excitatory postsynaptic potential (fEPSP) responses to physiological stimulation. The PHOTACs methodology should be broadly applicable to other key proteins implicated in synaptic function, especially for evaluating their precise roles in the maintenance of long-term potentiation and memory within subcellular dendritic domains.


Subject(s)
Long-Term Potentiation , Neurons , Mice , Animals , Neurons/metabolism , Synaptic Transmission , Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism , Synapses/metabolism , Hippocampus/metabolism
2.
bioRxiv ; 2023 Apr 09.
Article in English | MEDLINE | ID: mdl-37066279

ABSTRACT

Immunomodulatory drugs (IMiDs), which include thalidomide and its derivatives, have emerged as the standard of care against multiple myeloma. They function as molecular glues that bind to the E3 ligase cereblon (CRBN) and induce protein interactions with neosubstrates, including the transcription factors Ikaros (IKZF1) and Aiolos (IKZF3). The subsequent ubiquitylation and degradation of these transcription factors underlies the antiproliferative activity of IMiDs. Here, we introduce photoswitchable immunomodulatory drugs (PHOIMiDs) that can be used to degrade Ikaros and Aiolos in a light-dependent fashion. Our lead compound shows minimal activity in the dark and becomes an active degrader upon irradiation with violet light. It shows high selectivity over other transcription factors, regardless of its state, and could therefore be used to control the levels of Ikaros and Aiolos with high spatiotemporal precision.

3.
Methods Mol Biol ; 2365: 315-329, 2021.
Article in English | MEDLINE | ID: mdl-34432252

ABSTRACT

Proteolysis Targeting Chimeras (PROTACs) are a promising technology to degrade specific target proteins. As bifunctional small molecules, PROTACs induce the ternary complex formation between an E3 ligase and a protein of interest (POI), leading to polyubiquitylation and subsequent proteasomal degradation of the protein in a catalytic fashion. We have developed a strategy to control PROTACs with the spatiotemporal precision of light, which led to light-activated versions, termed PHOTACs (PHOtochemically TArgeted Chimeras). By incorporating an azobenzene photoswitch into the PROTAC, we can reversibly control degradation of the POI, as demonstrated for BRD2-4 and FKBP12. Here, we describe our modular approach and the application of PHOTACs for the optical control of protein levels in detail. PHOTACs hold promise as both research tools and precision pharmaceutics.


Subject(s)
Proteolysis , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism
4.
Angew Chem Int Ed Engl ; 60(37): 20178-20183, 2021 09 06.
Article in English | MEDLINE | ID: mdl-34081840

ABSTRACT

Covalent kinase inhibitors account for some of the most successful drugs that have recently entered the clinic and many others are in preclinical development. A common strategy is to target cysteines in the vicinity of the ATP binding site using an acrylamide electrophile. To increase the tissue selectivity of kinase inhibitors, it could be advantageous to control the reactivity of these electrophiles with light. Here, we introduce covalent inhibitors of the kinase JNK3 that function as photoswitchable affinity labels (PALs). Our lead compounds contain a diazocine photoswitch, are poor non-covalent inhibitors in the dark, and become effective covalent inhibitors after irradiation with visible light. Our proposed mode of action is supported by X-ray structures that explain why these compounds are unreactive in the dark and undergo proximity-based covalent attachment following exposure to light.


Subject(s)
Light , Protein Kinase Inhibitors/pharmacology , Protein Kinases/metabolism , Humans , Protein Kinase Inhibitors/chemistry
5.
Cell Chem Biol ; 28(7): 969-986, 2021 07 15.
Article in English | MEDLINE | ID: mdl-34115971

ABSTRACT

Molecular glues and proteolysis targeting chimeras (PROTACs) have emerged as small-molecule tools that selectively induce the degradation of a chosen protein and have shown therapeutic promise. Recently, several approaches employing light as an additional stimulus to control induced protein degradation have been reported. Here, we analyze the principles guiding the design of such systems, provide a survey of the literature published to date, and discuss opportunities for further development. Light-responsive degraders enable the precise temporal and spatial control of protein levels, making them useful research tools but also potential candidates for human precision medicine.


Subject(s)
Proteins/antagonists & inhibitors , Small Molecule Libraries/pharmacology , Humans , Precision Medicine , Proteins/metabolism , Proteolysis/drug effects , Small Molecule Libraries/chemistry
7.
Sci Adv ; 6(8): eaay5064, 2020 02.
Article in English | MEDLINE | ID: mdl-32128406

ABSTRACT

PROTACs (PROteolysis TArgeting Chimeras) are bifunctional molecules that target proteins for ubiquitylation by an E3 ligase complex and subsequent degradation by the proteasome. They have emerged as powerful tools to control the levels of specific cellular proteins. We now introduce photoswitchable PROTACs that can be activated with the spatiotemporal precision that light provides. These trifunctional molecules, which we named PHOTACs (PHOtochemically TArgeting Chimeras), consist of a ligand for an E3 ligase, a photoswitch, and a ligand for a protein of interest. We demonstrate this concept by using PHOTACs that target either BET family proteins (BRD2,3,4) or FKBP12. Our lead compounds display little or no activity in the dark but can be reversibly activated with different wavelengths of light. Our modular approach provides a method for the optical control of protein levels with photopharmacology and could lead to new types of precision therapeutics that avoid undesired systemic toxicity.


Subject(s)
Optical Phenomena , Proteolysis , Cell Line, Tumor , Humans , Light , Proteolysis/radiation effects , Tacrolimus Binding Protein 1A/metabolism
8.
J Am Chem Soc ; 141(43): 17295-17304, 2019 10 30.
Article in English | MEDLINE | ID: mdl-31584272

ABSTRACT

Azobenzenes are versatile photoswitches that have found widespread use in a variety of fields, ranging from photopharmacology to the material sciences. In addition to regular azobenzenes, the cyclic diazocines have recently emerged. Although diazocines have fascinating conformational and photophysical properties, their use has been limited by their synthetic accessibility. Herein, we present a general, high-yielding protocol that relies on the oxidative cyclization of dianilines. In combination with a modular substrate synthesis, it allows for rapid access to diversely functionalized diazocines on gram scales. Our work systematically explores substituent effects on the photoisomerization and thermal relaxation of diazocines. It will enable their incorporation into a wide variety of functional molecules, unlocking the full potential of these emerging photoswitches. The method can be applied to the synthesis of a new cyclic azobenzene with a nine-membered central ring and distinct properties.


Subject(s)
Azo Compounds/chemistry , Azocines/chemistry , Azo Compounds/chemical synthesis , Azocines/chemical synthesis , Copper/chemistry , Cyclization , Magnetic Resonance Spectroscopy , Oxidation-Reduction , Photochemical Processes , Spectrophotometry, Ultraviolet
11.
Cell ; 162(2): 403-411, 2015 Jul 16.
Article in English | MEDLINE | ID: mdl-26165941

ABSTRACT

Small molecules that interfere with microtubule dynamics, such as Taxol and the Vinca alkaloids, are widely used in cell biology research and as clinical anticancer drugs. However, their activity cannot be restricted to specific target cells, which also causes severe side effects in chemotherapy. Here, we introduce the photostatins, inhibitors that can be switched on and off in vivo by visible light, to optically control microtubule dynamics. Photostatins modulate microtubule dynamics with a subsecond response time and control mitosis in living organisms with single-cell spatial precision. In longer-term applications in cell culture, photostatins are up to 250 times more cytotoxic when switched on with blue light than when kept in the dark. Therefore, photostatins are both valuable tools for cell biology, and are promising as a new class of precision chemotherapeutics whose toxicity may be spatiotemporally constrained using light.


Subject(s)
Antimitotic Agents/chemistry , Cell Death , Microtubules/drug effects , Mitosis , Stilbenes/chemistry , Animals , Antimitotic Agents/toxicity , Cell Line, Tumor , Cytoskeleton/chemistry , Humans , Light , Mice , Polymerization , Stilbenes/toxicity
12.
Chemistry ; 19(46): 15627-38, 2013 Nov 11.
Article in English | MEDLINE | ID: mdl-24114975

ABSTRACT

Various energetic polynitro esters, carbamates, and nitrocarbamates that were derived from the amino acid glycine were fully characterized by single-crystal X-ray diffraction, vibrational spectroscopy (IR and Raman), multinuclear NMR spectroscopy, elemental analysis, and differential scanning calorimetry (DSC). Owing to their positive oxygen balance, the suitability of these compounds as potential oxidizers in energetic formulations was investigated and discussed. In addition, the heats of formation of the products were calculated by using the Gaussian 09 program package at the CBS-4M level of theory. From these values and the calculated densities (from the X-ray data), several detonation parameters, such as detonation pressure, velocity, energy, and temperature, were computed by using the EXPLO5 code. Furthermore, their sensitivities towards impact, friction, and electrostatic discharge were tested by using a drop hammer, a friction tester (both BAM certified), and a small-scale electrical-discharge device, respectively.

SELECTION OF CITATIONS
SEARCH DETAIL
...