Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 45
Filter
Add more filters










Publication year range
1.
FEBS J ; 2023 Oct 24.
Article in English | MEDLINE | ID: mdl-37873605

ABSTRACT

Cellular senescence is a state of durable cell arrest that has been identified both in vitro and in vivo. It is associated with profound changes in gene expression and a specific secretory profile that includes pro-inflammatory cytokines, growth factors and matrix-remodelling enzymes, referred to as the senescence-associated secretory phenotype (SASP). In cancer, senescence can have anti- or pro-tumour effects. On one hand, it can inhibit tumour progression in a cell autonomous manner. On the other hand, senescence can also promote tumour initiation, progression, metastatic dissemination and resistance to therapy in a paracrine manner. Therefore, despite efforts to target senescence as a potential strategy to inhibit tumour growth, senescent cancer and microenvironmental cells can eventually lead to uncontrolled proliferation and aggressive tumour phenotypes. This can happen either through overcoming senescence growth arrest or through SASP-mediated effects in adjacent tumour cells. This review will discuss how senescence affects the tumour microenvironment, including extracellular matrix remodelling, the immune system and the vascular compartment, to promote tumourigenesis, metastasis and resistance to DNA-damaging therapies. It will also discuss current approaches used in the field to target senescence: senolytics, improving the immune clearance of senescent cells and targeting the SASP.

3.
Development ; 149(13)2022 07 01.
Article in English | MEDLINE | ID: mdl-35723257

ABSTRACT

Precise vascular patterning is crucial for normal growth and development. The ERG transcription factor drives Delta-like ligand 4 (DLL4)/Notch signalling and is thought to act as a pivotal regulator of endothelial cell (EC) dynamics and developmental angiogenesis. However, molecular regulation of ERG activity remains obscure. Using a series of EC-specific focal adhesion kinase (FAK)-knockout (KO) and point-mutant FAK-knock-in mice, we show that loss of ECFAK, its kinase activity or phosphorylation at FAK-Y397, but not FAK-Y861, reduces ERG and DLL4 expression levels together with concomitant aberrations in vascular patterning. Rapid immunoprecipitation mass spectrometry of endogenous proteins identified that endothelial nuclear-FAK interacts with the deubiquitinase USP9x and the ubiquitin ligase TRIM25. Further in silico analysis confirms that ERG interacts with USP9x and TRIM25. Moreover, ERG levels are reduced in FAKKO ECs via a ubiquitin-mediated post-translational modification programme involving USP9x and TRIM25. Re-expression of ERG in vivo and in vitro rescues the aberrant vessel-sprouting defects observed in the absence of ECFAK. Our findings identify ECFAK as a regulator of retinal vascular patterning by controlling ERG protein degradation via TRIM25/USP9x.


Subject(s)
Endothelial Cells , Transcription Factors , Animals , Endothelial Cells/metabolism , Focal Adhesion Protein-Tyrosine Kinases/metabolism , Mice , Neovascularization, Physiologic/genetics , Signal Transduction , Transcription Factors/genetics , Transcription Factors/metabolism , Ubiquitins/metabolism
4.
Cancer Res ; 82(10): 1909-1925, 2022 05 16.
Article in English | MEDLINE | ID: mdl-35350066

ABSTRACT

Despite substantial advances in the treatment of solid cancers, resistance to therapy remains a major obstacle to prolonged progression-free survival. Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive cancers, with a high level of liver metastasis. Primary PDAC is highly hypoxic, and metastases are resistant to first-line treatment, including gemcitabine. Recent studies have indicated that endothelial cell (EC) focal adhesion kinase (FAK) regulates DNA-damaging therapy-induced angiocrine factors and chemosensitivity in primary tumor models. Here, we show that inducible loss of EC-FAK in both orthotopic and spontaneous mouse models of PDAC is not sufficient to affect primary tumor growth but reduces liver and lung metastasis load and improves survival rates in gemcitabine-treated, but not untreated, mice. EC-FAK loss did not affect primary tumor angiogenesis, tumor blood vessel leakage, or early events in metastasis, including the numbers of circulating tumor cells, tumor cell homing, or metastatic seeding. Phosphoproteomics analysis showed a downregulation of the MAPK, RAF, and PAK signaling pathways in gemcitabine-treated FAK-depleted ECs compared with gemcitabine-treated wild-type ECs. Moreover, low levels of EC-FAK correlated with increased survival and reduced relapse in gemcitabine-treated patients with PDAC, supporting the clinical relevance of these findings. Altogether, we have identified a new role of EC-FAK in regulating PDAC metastasis upon gemcitabine treatment that impacts outcome. SIGNIFICANCE: These findings establish the potential utility of combinatorial endothelial cell FAK targeting together with gemcitabine in future clinical applications to control metastasis in patients with pancreatic ductal adenocarcinoma.


Subject(s)
Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Animals , Carcinoma, Pancreatic Ductal/pathology , Cell Line, Tumor , Deoxycytidine/analogs & derivatives , Endothelial Cells/pathology , Focal Adhesion Protein-Tyrosine Kinases/metabolism , Humans , Mice , Neoplasm Recurrence, Local , Pancreatic Neoplasms/pathology , Gemcitabine , Pancreatic Neoplasms
5.
J Pathol ; 256(2): 235-247, 2022 02.
Article in English | MEDLINE | ID: mdl-34743335

ABSTRACT

A common limitation of cancer treatments is chemotherapy resistance. We have previously identified that endothelial cell (EC)-specific deletion of focal adhesion kinase (FAK) sensitises tumour cells to DNA-damaging therapies, reducing tumour growth in mice. The present study addressed the kinase activity dependency of EC FAK sensitisation to the DNA-damaging chemotherapeutic drug, doxorubicin. FAK is recognised as a therapeutic target in tumour cells, leading to the development of a range of inhibitors, the majority being ATP competitive kinase inhibitors. We demonstrate that inactivation of EC FAK kinase domain (kinase dead; EC FAK-KD) in established subcutaneous B16F0 tumours improves melanoma cell sensitisation to doxorubicin. Doxorubicin treatment in EC FAK-KD mice reduced the percentage change in exponential B16F0 tumour growth further than in wild-type mice. There was no difference in tumour blood vessel numbers, vessel perfusion or doxorubicin delivery between genotypes, suggesting a possible angiocrine effect on the regulation of tumour growth. Doxorubicin reduced perivascular malignant cell proliferation, while enhancing perivascular tumour cell apoptosis and DNA damage in tumours grown in EC FAK-KD mice 48 h after doxorubicin injection. Human pulmonary microvascular ECs treated with the pharmacological FAK kinase inhibitors defactinib, PF-562,271 or PF-573,228 in combination with doxorubicin also reduced cytokine expression levels. Together, these data suggest that targeting EC FAK kinase activity may alter angiocrine signals that correlate with improved acute tumour cell chemosensitisation. © 2021 The Authors. The Journal of Pathology published by John Wiley & Sons, Ltd. on behalf of The Pathological Society of Great Britain and Ireland.


Subject(s)
Endothelial Cells/enzymology , Focal Adhesion Kinase 1/metabolism , Melanoma, Experimental/enzymology , Neovascularization, Physiologic , Skin Neoplasms/enzymology , Angiogenesis Inhibitors/pharmacology , Animals , Antibiotics, Antineoplastic/pharmacology , Apoptosis , Cell Line, Tumor , Cell Proliferation , Cytokines/metabolism , Doxorubicin/pharmacology , Drug Resistance, Neoplasm , Female , Focal Adhesion Kinase 1/antagonists & inhibitors , Focal Adhesion Kinase 1/genetics , Humans , Male , Melanoma, Experimental/drug therapy , Melanoma, Experimental/genetics , Melanoma, Experimental/pathology , Mice, Inbred C57BL , Mice, Knockout , Protein Kinase Inhibitors/pharmacology , Signal Transduction , Skin Neoplasms/drug therapy , Skin Neoplasms/genetics , Skin Neoplasms/pathology , Tumor Burden
7.
Angiogenesis ; 24(3): 471-482, 2021 08.
Article in English | MEDLINE | ID: mdl-33730293

ABSTRACT

Focal adhesion kinase (FAK) is a non-receptor tyrosine kinase that is overexpressed in many cancer types and in vivo studies have shown that vascular endothelial cell FAK expression and FAK-phosphorylation at tyrosine (Y) 397, and subsequently FAK-Y861, are important in tumour angiogenesis. Pericytes also play a vital role in regulating tumour blood vessel stabilisation, but the specific involvement of pericyte FAK-Y397 and FAK-Y861 phosphorylation in tumour blood vessels is unknown. Using PdgfrßCre + ;FAKWT/WT, PdgfrßCre + ;FAKY397F/Y397F and PdgfrßCre + ;FAKY861F/Y861F mice, our data demonstrate that Lewis lung carcinoma tumour growth, tumour blood vessel density, blood vessel perfusion and pericyte coverage were affected only in late stage tumours in PdgfrßCre + ;FAKY861F/Y861F but not PdgfrßCre + ;FAKY397F/Y397F mice. Further examination indicates a dual role for pericyte FAK-Y861 phosphorylation in the regulation of tumour vessel regression and also in the control of pericyte derived signals that influence apoptosis in cancer cells. Overall this study identifies the role of pericyte FAK-Y861 in the regulation of tumour vessel regression and tumour growth control and that non-phosphorylatable FAK-Y861F in pericytes reduces tumour growth and blood vessel density.


Subject(s)
Apoptosis , Carcinoma, Lewis Lung , Focal Adhesion Kinase 1 , Mutation, Missense , Neoplasm Proteins , Neovascularization, Pathologic , Pericytes/enzymology , Amino Acid Substitution , Animals , Carcinoma, Lewis Lung/enzymology , Carcinoma, Lewis Lung/genetics , Focal Adhesion Kinase 1/genetics , Focal Adhesion Kinase 1/metabolism , Mice , Mice, Transgenic , Neoplasm Proteins/genetics , Neoplasm Proteins/metabolism , Neovascularization, Pathologic/enzymology , Neovascularization, Pathologic/genetics , Phosphorylation
8.
JAMA Netw Open ; 3(10): e2019304, 2020 10 01.
Article in English | MEDLINE | ID: mdl-33107920

ABSTRACT

Importance: Determining the risk of relapse after neoadjuvant chemotherapy in patients with locally advanced breast cancer is required to offer alternative therapeutic strategies. Objective: To examine whether endothelial cell phosphorylated-focal adhesion kinase (EC-pY397-FAK) expression in patients with treatment-naive locally advanced breast cancer is a biomarker for chemotherapy sensitivity and is associated with survival after neoadjuvant chemotherapy. Design, Setting, and Participants: In this prognostic study, expression levels of EC-pY397-FAK and tumor cell (TC)-pY397-FAK were determined by immunohistochemistry in prechemotherapy core biopsies from 82 female patients with locally advanced breast cancer treated with anthracycline-based combination neoadjuvant chemotherapy at Nottingham City Hospital in Nottingham, UK. Median follow-up time was 67 months. The study was conducted from December 1, 2010, to September 28, 2019, and data analysis was performed from October 2, 2019, to March 31, 2020. Exposures: All women underwent surgery followed by adjuvant radiotherapy and, if tumors were estrogen receptor-positive, 5-year tamoxifen treatment. Main Outcomes and Measures: Outcomes were pathologic complete response and 5-year relapse-free survival examined using Kaplan-Meier, univariable logistic, multivariable logistic, and Cox proportional hazards models. Results: A total of 82 women (age, 29-76 years) with locally advanced breast cancer (stage IIA-IIIC) were included. Of these, 21 women (26%) had high EC-pY397-FAK expression that was associated with estrogen receptor positivity (71% vs 46%; P = .04), progesterone receptor positivity (67% vs 39%; P = .03), high Ki67 (86% vs 41%; P < .001), 4-immunohistochemically stained luminal-B (52% vs 8%; P < .001), higher tumor category (T3/T4 category: 90% vs 59%; P = .01), high lymph node category (N2-3 category: 43% vs 5%; P < .001), and high tumor node metastasis stage (IIIA-IIIC: 90% vs 66%; P = .03). Of 21 patients with high EC-pY397-FAK expression levels, none showed pathologic complete response, compared with 11 of 61 patients with low EC-pY397-FAK expression levels who showed pathologic complete response (odds ratio, 0.70; 95% CI, 0.61-0.82; P = .04). High EC-pY397-FAK expression levels and high blood vessel density (BVD) were associated with shorter 5-year relapse-free survival compared with those with low EC-pY397-FAK expression levels (hazard ratio [HR], 2.21; 95% CI, 1.17-4.20; P = .01) and low BVD (HR, 2.2; 95% CI, 1.15-4.35; P = .02). High TC-pY397-FAK expression levels in 15 of 82 women (18%) were not associated significantly with pathologic complete response or 5-year relapse-free survival. A multivariable Cox regression model for 5-year relapse-free survival indicated that high EC-pY397-FAK expression levels was an independent poor prognostic factor after controlling for other validated prognostic factors (HR, 3.91; 95% CI, 1.42-10.74; P = .01). Combined analysis of EC-pY397-FAK expression levels, TC-pY397-FAK expression levels, and BVD improved prognostic significance over individually tested features. Conclusions and Relevance: The findings of this study suggest that low EC-pY397-FAK expression levels are associated with chemotherapy sensitivity and improved 5-year relapse-free survival after systemic therapy. Combined analysis of high EC-pY397-FAK expression levels, high TC-pY397-FAK expression levels, and high BVD appeared to identify a high-risk population.


Subject(s)
Biomarkers, Tumor/metabolism , Breast Neoplasms/metabolism , Breast Neoplasms/mortality , Focal Adhesion Kinase 1/metabolism , Adult , Aged , Breast Neoplasms/pathology , Female , Humans , Immunohistochemistry , Kaplan-Meier Estimate , Middle Aged , Neoplasm Grading , Neoplasm Staging , Prognosis , Survival Rate
9.
Nat Commun ; 11(1): 2810, 2020 06 04.
Article in English | MEDLINE | ID: mdl-32499572

ABSTRACT

The overexpression of the protein tyrosine kinase, Focal adhesion kinase (FAK), in endothelial cells has implicated its requirement in angiogenesis and tumour growth, but how pericyte FAK regulates tumour angiogenesis is unknown. We show that pericyte FAK regulates tumour growth and angiogenesis in multiple mouse models of melanoma, lung carcinoma and pancreatic B-cell insulinoma and provide evidence that loss of pericyte FAK enhances Gas6-stimulated phosphorylation of the receptor tyrosine kinase, Axl with an upregulation of Cyr61, driving enhanced tumour growth. We further show that pericyte derived Cyr61 instructs tumour cells to elevate expression of the proangiogenic/protumourigenic transmembrane receptor Tissue Factor. Finally, in human melanoma we show that when 50% or more tumour blood vessels are pericyte-FAK negative, melanoma patients are stratified into those with increased tumour size, enhanced blood vessel density and metastasis. Overall our data uncover a previously unknown mechanism of tumour growth by pericytes that is controlled by pericyte FAK.


Subject(s)
Cysteine-Rich Protein 61/metabolism , Focal Adhesion Kinase 1/metabolism , Gene Expression Regulation, Neoplastic , Intercellular Signaling Peptides and Proteins/metabolism , Neovascularization, Pathologic , Pericytes/metabolism , Proto-Oncogene Proteins/metabolism , Receptor Protein-Tyrosine Kinases/metabolism , Animals , Aorta, Thoracic/pathology , Carcinoma, Lewis Lung/metabolism , Cell Adhesion , Cell Proliferation , Female , Focal Adhesion Kinase 1/genetics , Humans , Lymphokines/metabolism , Male , Melanoma/blood supply , Melanoma/metabolism , Melanoma, Experimental , Mice , Mice, Inbred C57BL , Mice, Knockout , Neoplasms/pathology , Placenta Growth Factor/metabolism , Platelet-Derived Growth Factor/metabolism , Proto-Oncogene Proteins c-sis/metabolism , Signal Transduction , Tumor Microenvironment , Vascular Endothelial Growth Factor A/metabolism , Axl Receptor Tyrosine Kinase
10.
Cell ; 181(6): 1346-1363.e21, 2020 06 11.
Article in English | MEDLINE | ID: mdl-32473126

ABSTRACT

Enhanced blood vessel (BV) formation is thought to drive tumor growth through elevated nutrient delivery. However, this observation has overlooked potential roles for mural cells in directly affecting tumor growth independent of BV function. Here we provide clinical data correlating high percentages of mural-ß3-integrin-negative tumor BVs with increased tumor sizes but no effect on BV numbers. Mural-ß3-integrin loss also enhances tumor growth in implanted and autochthonous mouse tumor models with no detectable effects on BV numbers or function. At a molecular level, mural-cell ß3-integrin loss enhances signaling via FAK-p-HGFR-p-Akt-p-p65, driving CXCL1, CCL2, and TIMP-1 production. In particular, mural-cell-derived CCL2 stimulates tumor cell MEK1-ERK1/2-ROCK2-dependent signaling and enhances tumor cell survival and tumor growth. Overall, our data indicate that mural cells can control tumor growth via paracrine signals regulated by ß3-integrin, providing a previously unrecognized mechanism of cancer growth control.


Subject(s)
Integrin beta3/metabolism , Neoplasms/metabolism , Tumor Burden/physiology , Animals , Cell Line, Tumor , Cell Movement/physiology , Cell Proliferation/physiology , Female , Humans , Male , Melanoma, Experimental/metabolism , Mice , Mice, Inbred C57BL , Signal Transduction/physiology
11.
Cancer Res ; 80(12): 2586-2598, 2020 06 15.
Article in English | MEDLINE | ID: mdl-32303578

ABSTRACT

The angiopoietin (Angpt)-TIE signaling pathway controls vascular maturation and maintains the quiescent phenotype of resting vasculature. The contextual agonistic and antagonistic Tie2 ligand ANGPT2 is believed to be exclusively produced by endothelial cells, disrupting constitutive ANGPT1-TIE2 signaling to destabilize the microvasculature during pathologic disorders like inflammation and cancer. However, scattered reports have also portrayed tumor cells as a source of ANGPT2. Employing ISH-based detection of ANGPT2, we found strong tumor cell expression of ANGPT2 in a subset of patients with melanoma. Comparative analysis of biopsies revealed a higher fraction of ANGPT2-expressing tumor cells in metastatic versus primary sites. Tumor cell-expressed Angpt2 was dispensable for primary tumor growth, yet in-depth analysis of primary tumors revealed enhanced intratumoral necrosis upon silencing of tumor cell Angpt2 expression in the absence of significant immune and vascular alterations. Global transcriptional profiling of Angpt2-deficient tumor cells identified perturbations in redox homeostasis and an increased response to cellular oxidative stress. Ultrastructural analyses illustrated a significant increase of dysfunctional mitochondria in Angpt2-silenced tumor cells, thereby resulting in enhanced reactive oxygen species (ROS) production and downstream MAPK stress signaling. Functionally, enhanced ROS in Angpt2-silenced tumor cells reduced colonization potential in vitro and in vivo. Taken together, these findings uncover the hitherto unappreciated role of tumor cell-expressed ANGPT2 as an autocrine-positive regulator of metastatic colonization and validate ANGPT2 as a therapeutic target for a well-defined subset of patients with melanoma. SIGNIFICANCE: This study reveals that tumor cells can be a source of ANGPT2 in the tumor microenvironment and that tumor cell-derived ANGPT2 augments metastatic colonization by protecting tumor cells from oxidative stress.


Subject(s)
Angiopoietin-2/metabolism , Melanoma/secondary , Nevus/pathology , Skin Neoplasms/pathology , Angiopoietin-2/genetics , Animals , Autocrine Communication , Biopsy , Cell Line, Tumor , Disease Models, Animal , Disease Progression , Female , Gene Expression Profiling , Gene Knockdown Techniques , Human Umbilical Vein Endothelial Cells , Humans , Kaplan-Meier Estimate , MAP Kinase Signaling System , Melanoma/mortality , Mice , Reactive Oxygen Species/metabolism , Skin/pathology , Skin Neoplasms/mortality , Tissue Array Analysis , Tumor Microenvironment
12.
Nat Commun ; 11(1): 1290, 2020 03 10.
Article in English | MEDLINE | ID: mdl-32157087

ABSTRACT

Emerging evidence suggests that cancer cell metabolism can be regulated by cancer-associated fibroblasts (CAFs), but the mechanisms are poorly defined. Here we show that CAFs regulate malignant cell metabolism through pathways under the control of FAK. In breast and pancreatic cancer patients we find that low FAK expression, specifically in the stromal compartment, predicts reduced overall survival. In mice, depletion of FAK in a subpopulation of CAFs regulates paracrine signals that increase malignant cell glycolysis and tumour growth. Proteomic and phosphoproteomic analysis in our mouse model identifies metabolic alterations which are reflected at the transcriptomic level in patients with low stromal FAK. Mechanistically we demonstrate that FAK-depletion in CAFs increases chemokine production, which via CCR1/CCR2 on cancer cells, activate protein kinase A, leading to enhanced malignant cell glycolysis. Our data uncover mechanisms whereby stromal fibroblasts regulate cancer cell metabolism independent of genetic mutations in cancer cells.


Subject(s)
Cancer-Associated Fibroblasts/enzymology , Focal Adhesion Protein-Tyrosine Kinases/metabolism , Neoplasms/metabolism , Neoplasms/pathology , Animals , Breast Neoplasms/blood supply , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Cell Line, Tumor , Cell Proliferation , Chemokines/metabolism , Female , Glycolysis , Humans , Male , Metabolic Networks and Pathways , Mice, Inbred C57BL , Neoplasms/blood supply , Pancreatic Neoplasms/blood supply , Pancreatic Neoplasms/metabolism , Pancreatic Neoplasms/pathology , Phosphoproteins/metabolism , Stromal Cells/metabolism , Survival Analysis , Xenograft Model Antitumor Assays
13.
J Pathol ; 249(4): 523-535, 2019 12.
Article in English | MEDLINE | ID: mdl-31424556

ABSTRACT

Coronary microvascular dysfunction combined with maladaptive cardiomyocyte morphology and energetics is a major contributor to heart failure advancement. Thus, dually enhancing cardiac angiogenesis and targeting cardiomyocyte function to slow, or reverse, the development of heart failure is a logical step towards improved therapy. We present evidence for the potential to repurpose a former anti-cancer Arg-Gly-Asp (RGD)-mimetic pentapeptide, cilengitide, here used at low doses. Cilengitide targets αvß3 integrin and this protein is upregulated in human dilated and ischaemic cardiomyopathies. Treatment of mice after abdominal aortic constriction (AAC) surgery with low-dose cilengitide (ldCil) enhances coronary angiogenesis and directly affects cardiomyocyte hypertrophy with an associated reduction in disease severity. At a molecular level, ldCil treatment has a direct effect on cardiac endothelial cell transcriptomic profiles, with a significant enhancement of pro-angiogenic signalling pathways, corroborating the enhanced angiogenic phenotype after ldCil treatment. Moreover, ldCil treatment of Angiotensin II-stimulated AngII-stimulated cardiomyocytes significantly restores transcriptomic profiles similar to those found in normal human heart. The significance of this finding is enhanced by transcriptional similarities between AngII-treated cardiomyocytes and failing human hearts. Taken together, our data provide evidence supporting a possible new strategy for improved heart failure treatment using low-dose RGD-mimetics with relevance to human disease. © 2019 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.


Subject(s)
Cardiomegaly/drug therapy , Cardiovascular Agents/pharmacology , Drug Repositioning , Heart Failure/drug therapy , Integrin alphaVbeta3/antagonists & inhibitors , Myocytes, Cardiac/drug effects , Snake Venoms/pharmacology , Angiotensin II/pharmacology , Animals , Cardiomegaly/genetics , Cardiomegaly/metabolism , Cardiomegaly/physiopathology , Case-Control Studies , Cells, Cultured , Disease Models, Animal , Fibrosis , Gene Expression Regulation , Heart Failure/genetics , Heart Failure/metabolism , Heart Failure/physiopathology , Humans , Integrin alphaVbeta3/metabolism , Male , Mice , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Neovascularization, Physiologic/drug effects , Recovery of Function , Signal Transduction , Transcriptome
14.
Cancer Res ; 79(17): 4371-4386, 2019 09 01.
Article in English | MEDLINE | ID: mdl-31189647

ABSTRACT

Expression of focal adhesion kinase (FAK) in endothelial cells (EC) is essential for angiogenesis, but how FAK phosphorylation at tyrosine-(Y)397 and Y861 regulate tumor angiogenesis in vivo is unknown. Here, we show that tumor growth and angiogenesis are constitutively reduced in inducible, ECCre+;FAKY397F/Y397F -mutant mice. Conversely, ECCre+;FAKY861F/Y861F mice exhibit normal tumor growth with an initial reduction in angiogenesis that recovered in end-stage tumors. Mechanistically, FAK-Y397F ECs exhibit increased Tie2 expression, reduced Vegfr2 expression, decreased ß1 integrin activation, and disrupted downstream FAK/Src/PI3K(p55)/Akt signaling. In contrast, FAK-Y861F ECs showed decreased Vegfr2 and Tie2 expression with an enhancement in ß1 integrin activation. This corresponds with a decrease in Vegfa-stimulated response, but an increase in Vegfa+Ang2- or conditioned medium from tumor cell-stimulated cellular/angiogenic responses, mimicking responses in end-stage tumors with elevated Ang2 levels. Mechanistically, FAK-Y861F, but not FAK-Y397F ECs showed enhanced p190RhoGEF/P130Cas-dependent signaling that is required for the elevated responses to Vegfa+Ang2. This study establishes the differential requirements of EC-FAK-Y397 and EC-FAK-Y861 phosphorylation in the regulation of EC signaling and tumor angiogenesis in vivo. SIGNIFICANCE: Distinct motifs of the focal adhesion kinase differentially regulate tumor blood vessel formation and remodeling.


Subject(s)
Focal Adhesion Kinase 1/metabolism , Neovascularization, Pathologic/metabolism , Angiotensin II/pharmacology , Animals , Cell Movement/genetics , Cell Proliferation/genetics , Endothelial Cells/metabolism , Epithelial Cells/metabolism , Epithelial Cells/pathology , Focal Adhesion Kinase 1/genetics , Integrin beta1/metabolism , Mice, Knockout , Mice, Mutant Strains , Neovascularization, Pathologic/drug therapy , Phosphorylation , Receptor, TIE-2/genetics , Receptor, TIE-2/metabolism , Tyrosine/metabolism , Vascular Endothelial Growth Factor A/pharmacology , Vascular Endothelial Growth Factor Receptor-2/genetics , Vascular Endothelial Growth Factor Receptor-2/metabolism , Xenograft Model Antitumor Assays , rhoA GTP-Binding Protein/metabolism
15.
EMBO Mol Med ; 10(8)2018 08.
Article in English | MEDLINE | ID: mdl-29930174

ABSTRACT

The adaptive cellular response to low oxygen tensions is mediated by the hypoxia-inducible factors (HIFs), a family of heterodimeric transcription factors composed of HIF-α and HIF-ß subunits. Prolonged HIF expression is a key contributor to cellular transformation, tumorigenesis and metastasis. As such, HIF degradation under hypoxic conditions is an essential homeostatic and tumour-suppressive mechanism. LIMD1 complexes with PHD2 and VHL in physiological oxygen levels (normoxia) to facilitate proteasomal degradation of the HIF-α subunit. Here, we identify LIMD1 as a HIF-1 target gene, which mediates a previously uncharacterised, negative regulatory feedback mechanism for hypoxic HIF-α degradation by modulating PHD2-LIMD1-VHL complex formation. Hypoxic induction of LIMD1 expression results in increased HIF-α protein degradation, inhibiting HIF-1 target gene expression, tumour growth and vascularisation. Furthermore, we report that copy number variation at the LIMD1 locus occurs in 47.1% of lung adenocarcinoma patients, correlates with enhanced expression of a HIF target gene signature and is a negative prognostic indicator. Taken together, our data open a new field of research into the aetiology, diagnosis and prognosis of LIMD1-negative lung cancers.


Subject(s)
Adenocarcinoma/genetics , Gene Expression Regulation, Neoplastic , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Intracellular Signaling Peptides and Proteins/metabolism , LIM Domain Proteins/metabolism , Lung Neoplasms/genetics , Adenocarcinoma/diagnosis , Adenocarcinoma/metabolism , Adenocarcinoma/mortality , Adult , Aged , Aged, 80 and over , Animals , Carcinogenesis/genetics , Carcinogenesis/metabolism , Cell Hypoxia/genetics , Cell Hypoxia/physiology , Cell Line, Tumor , Feedback, Physiological , Female , Humans , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Intracellular Signaling Peptides and Proteins/genetics , LIM Domain Proteins/genetics , Lung Neoplasms/diagnosis , Lung Neoplasms/metabolism , Lung Neoplasms/mortality , Male , Mice , Middle Aged , Prognosis , Survival Analysis , Vascular Endothelial Growth Factor A/genetics
16.
J Cell Sci ; 130(10): 1772-1784, 2017 05 15.
Article in English | MEDLINE | ID: mdl-28386022

ABSTRACT

The neuromuscular junction (NMJ) is the synapse between motoneurons and skeletal muscle, and is responsible for eliciting muscle contraction. Neurotransmission at synapses depends on the release of synaptic vesicles at sites called active zones (AZs). Various proteins of the extracellular matrix are crucial for NMJ development; however, little is known about the identity and functions of the receptors that mediate their effects. Using genetically modified mice, we find that integrin-α3 (encoded by Itga3), an adhesion receptor at the presynaptic membrane, is involved in the localisation of AZ components and efficient synaptic vesicle release. Integrin-α3 also regulates integrity of the synapse - mutant NMJs present with progressive structural changes and upregulated autophagy, features commonly observed during ageing and in models of neurodegeneration. Unexpectedly, we find instances of nerve terminal detachment from the muscle fibre; to our knowledge, this is the first report of a receptor that is required for the physical anchorage of pre- and postsynaptic elements at the NMJ. These results demonstrate multiple roles of integrin-α3 at the NMJ, and suggest that alterations in its function could underlie defects that occur in neurodegeneration or ageing.


Subject(s)
Integrin alpha3/metabolism , Neuromuscular Junction/metabolism , Aging/metabolism , Animals , Autophagy , Calcium/metabolism , Embryonic Development , Mice, Inbred C57BL , Motor Neurons/metabolism , Motor Neurons/ultrastructure , Muscle Development , Muscle Fibers, Skeletal/metabolism , Muscle Fibers, Skeletal/ultrastructure , Mutation/genetics , Neuromuscular Junction/ultrastructure , Protein Transport , Synapses/metabolism , Synapses/ultrastructure , Synaptic Transmission , Synaptic Vesicles/metabolism
17.
J Cell Sci ; 130(9): 1583-1595, 2017 05 01.
Article in English | MEDLINE | ID: mdl-28289267

ABSTRACT

The α6ß1-integrin is a major laminin receptor, and formation of a laminin-rich basement membrane is a key feature in tumour blood vessel stabilisation and pericyte recruitment, processes that are important in the growth and maturation of tumour blood vessels. However, the role of pericyte α6ß1-integrin in angiogenesis is largely unknown. We developed mice where the α6-integrin subunit is deleted in pericytes and examined tumour angiogenesis and growth. These mice had: (1) reduced pericyte coverage of tumour blood vessels; (2) reduced tumour blood vessel stability; (3) increased blood vessel diameter; (4) enhanced blood vessel leakiness, and (5) abnormal blood vessel basement membrane architecture. Surprisingly, tumour growth, blood vessel density and metastasis were not altered. Analysis of retinas revealed that deletion of pericyte α6-integrin did not affect physiological angiogenesis. At the molecular level, we provide evidence that pericyte α6-integrin controls PDGFRß expression and AKT-mTOR signalling. Taken together, we show that pericyte α6ß1-integrin regulates tumour blood vessels by both controlling PDGFRß and basement membrane architecture. These data establish a novel dual role for pericyte α6-integrin as modulating the blood vessel phenotype during pathological angiogenesis.


Subject(s)
Blood Vessels/metabolism , Integrin alpha6beta1/metabolism , Neoplasms/blood supply , Pericytes/metabolism , Animals , Basement Membrane/drug effects , Basement Membrane/metabolism , Becaplermin , Blood Vessels/drug effects , Blood Vessels/pathology , Cell Line, Tumor , Cell Proliferation/drug effects , Integrases/metabolism , Mice , Neoplasm Metastasis , Neoplasms/metabolism , Neoplasms/pathology , Pericytes/drug effects , Proto-Oncogene Proteins c-sis/pharmacology , Receptor, Platelet-Derived Growth Factor beta/metabolism
19.
Cancer Res ; 75(15): 3098-107, 2015 Aug 01.
Article in English | MEDLINE | ID: mdl-26081809

ABSTRACT

The cytokine IL6 has a number of tumor-promoting activities in human and experimental cancers, but its potential as an angiogenic agent has not been fully investigated. Here, we show that IL6 can directly induce vessel sprouting in the ex vivo aortic ring model, as well as endothelial cell proliferation and migration, with similar potency to VEGF. However, IL6-stimulated aortic ring vessel sprouts had defective pericyte coverage compared with VEGF-stimulated vessels. The mechanism of IL6 action on pericytes involved stimulation of the Notch ligand Jagged1 as well as angiopoietin2 (Ang2). When peritoneal xenografts of ovarian cancer were treated with an anti-IL6 antibody, pericyte coverage of vessels was restored. In addition, in human ovarian cancer biopsies, there was an association between levels of IL6 mRNA, Jagged1, and Ang2. Our findings have implications for the use of cancer therapies that target VEGF or IL6 and for understanding abnormal angiogenesis in cancers, chronic inflammatory disease, and stroke.


Subject(s)
Interleukin-6/metabolism , Interleukin-6/pharmacology , Neovascularization, Pathologic/metabolism , Animals , Aorta/drug effects , Aorta/pathology , Calcium-Binding Proteins/genetics , Cell Line, Tumor , Endothelial Cells/drug effects , Endothelial Cells/metabolism , Endothelial Cells/pathology , Female , Humans , Intercellular Signaling Peptides and Proteins/genetics , Interleukin-6/genetics , Jagged-1 Protein , Male , Membrane Proteins/genetics , Mice, Inbred BALB C , Mice, Inbred C57BL , Molecular Targeted Therapy/methods , Neovascularization, Pathologic/chemically induced , Neovascularization, Pathologic/drug therapy , Neovascularization, Pathologic/pathology , Organ Culture Techniques , Ovarian Neoplasms/genetics , Ovarian Neoplasms/metabolism , Ovarian Neoplasms/pathology , Pericytes/drug effects , Pericytes/pathology , Rats, Wistar , Serrate-Jagged Proteins , Vascular Endothelial Growth Factor A/metabolism , Vascular Endothelial Growth Factor A/pharmacology , Vesicular Transport Proteins/genetics , Xenograft Model Antitumor Assays
20.
Dev Cell ; 32(1): 82-96, 2015 Jan 12.
Article in English | MEDLINE | ID: mdl-25584796

ABSTRACT

Blood vessel stability is essential for embryonic development; in the adult, many diseases are associated with loss of vascular integrity. The ETS transcription factor ERG drives expression of VE-cadherin and controls junctional integrity. We show that constitutive endothelial deletion of ERG (Erg(cEC-KO)) in mice causes embryonic lethality with vascular defects. Inducible endothelial deletion of ERG (Erg(iEC-KO)) results in defective physiological and pathological angiogenesis in the postnatal retina and tumors, with decreased vascular stability. ERG controls the Wnt/ß-catenin pathway by promoting ß-catenin stability, through signals mediated by VE-cadherin and the Wnt receptor Frizzled-4. Wnt signaling is decreased in ERG-deficient endothelial cells; activation of Wnt signaling with lithium chloride, which stabilizes ß-catenin levels, corrects vascular defects in Erg(cEC-KO) embryos. Finally, overexpression of ERG in vivo reduces permeability and increases stability of VEGF-induced blood vessels. These data demonstrate that ERG is an essential regulator of angiogenesis and vascular stability through Wnt signaling.


Subject(s)
Endothelium, Vascular/cytology , Endothelium, Vascular/metabolism , Neovascularization, Physiologic , Oncogene Proteins/physiology , Transcription Factors/physiology , Wnt Proteins/metabolism , beta Catenin/metabolism , Animals , Antigens, CD/genetics , Antigens, CD/metabolism , Blotting, Western , Cadherins/genetics , Cadherins/metabolism , Cells, Cultured , Chromatin Immunoprecipitation , Female , Frizzled Receptors/metabolism , Human Umbilical Vein Endothelial Cells/cytology , Human Umbilical Vein Endothelial Cells/metabolism , Humans , Integrases/metabolism , Lung/cytology , Lung/metabolism , Mice , Mice, Transgenic , Pregnancy , Real-Time Polymerase Chain Reaction , Signal Transduction , Transcriptional Regulator ERG , Vascular Endothelial Growth Factor A/genetics , Vascular Endothelial Growth Factor A/metabolism , Wnt Proteins/genetics , beta Catenin/genetics
SELECTION OF CITATIONS
SEARCH DETAIL