Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters











Database
Language
Publication year range
1.
Sci Total Environ ; 951: 175832, 2024 Nov 15.
Article in English | MEDLINE | ID: mdl-39197762

ABSTRACT

Responses of organisms to climate warming are variable and complex. Effects on species distributions are already evident and mean global surface ocean temperatures are likely to warm by up to 4.1 °C by 2100, substantially impacting the physiology and distributions of ectotherms. The largest marine ectotherm, the whale shark Rhincodon typus, broadly prefers sea surface temperatures (SST) ranging from 23 to 30 °C. Whole-species distribution models have projected a poleward range shift under future scenarios of climate change, but these models do not consider intraspecific variation or phenotypic plasticity in thermal limits when modelling species responses, and the impact of climate warming on the energetic requirements of whale sharks is unknown. Using a dataset of 111 whale shark movement tracks from aggregation sites in five countries across the Indian Ocean and the latest Earth-system modelling produced from Coupled Model Intercomparison Project Phase 6 for the Intergovernmental Panel on Climate Change, we examined how SST and total zooplankton biomass, their main food source, may change in the future, and what this means for the energetic balance and extent of suitable habitat for whale sharks. Earth System Models, under three Shared Socioeconomic Pathways (SSPs; SSP1-2.6, SSP3-7.0 and SSP5-8.5), project that by 2100 mean SST in four regions where whale shark aggregations are found will increase by up to 4.9 °C relative to the present, while zooplankton biomass will decrease. This reduction in zooplankton is projected to be accompanied by an increase in the energetic requirements of whale sharks because warmer water temperatures will increase their metabolic rate. We found marked differences in projected changes in the extent of suitable habitat when comparing a whole-species distribution model to one including regional variation. This suggests that the conventional approach of combining data from different regions within a species' distribution could underestimate the amount of local adaptation in populations, although parameterising local models could also suffer from having insufficient data and lead to model mis-specification or highly uncertain estimates. Our study highlights the need for further research into whale shark thermal tolerances and energetics, the complexities involved in projecting species responses to climate change, and the potential importance of considering intraspecific variation when building species distribution models.


Subject(s)
Climate Change , Ecosystem , Sharks , Animals , Sharks/physiology , Indian Ocean , Temperature
2.
Microbiol Resour Announc ; 12(1): e0033022, 2023 Jan 24.
Article in English | MEDLINE | ID: mdl-36541790

ABSTRACT

Here, we report two complete and three partial mitochondrial genome sequences of Dermacentor variabilis specimens collected from horses in the United States. The complete genomes are 14,837 bp long and contain 13 protein-coding genes, 2 rRNA genes, and 22 tRNA genes. The sequences have been deposited under GenBank accession numbers ON052120 to ON052124.

3.
Article in English | MEDLINE | ID: mdl-36437837

ABSTRACT

Several quantitative diagnostic techniques are available to estimate gastrointestinal parasite counts in the feces of ruminants. Comparing egg and oocyst magnitudes in naturally infected samples has been a recommended approach to rank fecal techniques. In this study, we compared the Mini-FLOTAC (sensitivity of 5 eggs per gram (EPG)/oocysts per gram (OPG)) and different averaged replicates of the modified McMaster techniques (sensitivity of 33.33 EPG/OPG) in 387 fecal samples from 10 herds of naturally infected North American bison in the Central Great Plains region of the USA. Both techniques were performed with fecal slurries homogenized in a fill-FLOTAC device. In the study population, prevalence of strongyle eggs, Eimeria spp. oocysts, Moniezia spp. eggs and Trichuris spp. eggs was 81.4%, 73.9%, 7.5%, and 3.1%, respectively. Counts of strongyle eggs and Eimeria spp. oocysts obtained from 1 to 3 averaged technical replicates of the modified McMaster technique were compared to a single replicate of the Mini-FLOTAC. Correlation between the two techniques increased with an increase in the number of averaged technical replicates of the modified McMaster technique used to calculate EGP/OPG. The correlation for Moniezia spp. EPG when averaged triplicates of the modified McMaster technique were compared to a single replicate of the Mini-FLOTAC count was high; however, the correlation for Trichuris spp. eggs was low. Additionally, we used averaged counts from both techniques to show the overdispersion of parasites in bison herds.

4.
Ticks Tick Borne Dis ; 13(6): 102038, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36170783

ABSTRACT

Dermacentor albipictus is a one-host tick broadly distributed across North America. There are two easily recognizable color variants - ornate and inornate/brown - that have been taxonomically synonymized. Based on mt-cox1 and mt-16S data, there is also evidence for two genetic lineages which do not match the color variants. We present for the first time the complete mitochondrial genomes of the two color variants of D. albipictus including representatives of each lineage. The AT-rich genomes are 14,822 bp - 14,865 bp in length and contain 13 protein coding genes, 2 ribosomal RNA genes and 22 transfer RNA genes, arranged in the conserved type 3 metastriate mitochondrial genome order. The overall differences were 10.66% between the mitochondrial genomes of D. albipictus ornate variant lineage 1 and lineage 2, 10.51% between lineage 1 and inornate/brown variant and 5.87% between lineage 2 and inornate/brown variant. The inornate/brown variant did not form a separate lineage and all inornate isolates were found to belong to lineage 2. Ornate variant isolates occurred in both lineage 1 and 2. The high divergence of the mitochondrial genome suggests that D. albipictus may represent a species complex. Other barcoding genes that may help capture the genetic differences between color and lineage variants include nad1, nad2, nad5, cox1 and atp8 loci. The mtDNA data generated in this study are available in GenBank (Accession numbers: OM678457 - OM678459 and ON032564 - ON032573) for future studies on tick taxonomy, phylogenetics and molecular epidemiology.

5.
iScience ; 25(9): 105008, 2022 Sep 16.
Article in English | MEDLINE | ID: mdl-36105597

ABSTRACT

Travel represents a major cost for many animals so there should be selection pressure for it to be efficient - at minimum cost. However, animals sometimes exceed minimum travel costs for reasons that must be correspondingly important. We use Dynamic Body Acceleration (DBA), an acceleration-based metric, as a proxy for movement-based power, in tandem with vertical velocity (rate of change in depth) in a shark (Rhincodon typus) to derive the minimum estimated power required to swim at defined vertical velocities. We show how subtraction of measured DBA from the estimated minimum power for any given vertical velocity provides a "proxy for power above minimum" metric (PPAmin), highlighting when these animals travel above minimum power. We suggest that the adoption of this metric across species has value in identifying where and when animals are subject to compelling conditions that lead them to deviate from ostensibly judicious energy expenditure.

6.
Proc Natl Acad Sci U S A ; 119(20): e2117440119, 2022 05 17.
Article in English | MEDLINE | ID: mdl-35533277

ABSTRACT

Marine traffic is increasing globally yet collisions with endangered megafauna such as whales, sea turtles, and planktivorous sharks go largely undetected or unreported. Collisions leading to mortality can have population-level consequences for endangered species. Hence, identifying simultaneous space use of megafauna and shipping throughout ranges may reveal as-yet-unknown spatial targets requiring conservation. However, global studies tracking megafauna and shipping occurrences are lacking. Here we combine satellite-tracked movements of the whale shark, Rhincodon typus, and vessel activity to show that 92% of sharks' horizontal space use and nearly 50% of vertical space use overlap with persistent large vessel (>300 gross tons) traffic. Collision-risk estimates correlated with reported whale shark mortality from ship strikes, indicating higher mortality in areas with greatest overlap. Hotspots of potential collision risk were evident in all major oceans, predominantly from overlap with cargo and tanker vessels, and were concentrated in gulf regions, where dense traffic co-occurred with seasonal shark movements. Nearly a third of whale shark hotspots overlapped with the highest collision-risk areas, with the last known locations of tracked sharks coinciding with busier shipping routes more often than expected. Depth-recording tags provided evidence for sinking, likely dead, whale sharks, suggesting substantial "cryptic" lethal ship strikes are possible, which could explain why whale shark population declines continue despite international protection and low fishing-induced mortality. Mitigation measures to reduce ship-strike risk should be considered to conserve this species and other ocean giants that are likely experiencing similar impacts from growing global vessel traffic.


Subject(s)
Sharks , Animals , Endangered Species , Plankton , Ships
7.
Dev Dyn ; 250(12): 1796-1809, 2021 12.
Article in English | MEDLINE | ID: mdl-34091971

ABSTRACT

BACKGROUND: Hand genes are required for the development of the vertebrate jaw, heart, peripheral nervous system, limb, gut, placenta, and decidua. Two Hand paralogues, Hand1 and Hand2, are present in most vertebrates, where they mediate different functions yet overlap in expression. In ray-finned fishes, Hand gene expression and function is only known for the zebrafish, which represents the rare condition of having a single Hand gene, hand2. Here we describe the developmental expression of hand1 and hand2 in the cichlid Copadichromis azureus. RESULTS: hand1 and hand2 are expressed in the cichlid heart, paired fins, pharyngeal arches, peripheral nervous system, gut, and lateral plate mesoderm with different degrees of overlap. CONCLUSIONS: Hand gene expression in the gut, peripheral nervous system, and pharyngeal arches may have already been fixed in the lobe- and ray-finned fish common ancestor. In other embryonic regions, such as paired appendages, hand2 expression was fixed, while hand1 expression diverged in lobe- and ray-finned fish lineages. In the lateral plate mesoderm and arch associated catecholaminergic cells, hand1 and hand2 swapped expression between divergent lineages. Distinct expression of cichlid hand1 and hand2 in the epicardium and myocardium of the developing heart may represent the ancestral pattern for bony fishes.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors/genetics , Cichlids/embryology , Embryonic Development/genetics , Animal Fins/embryology , Animal Fins/metabolism , Animals , Basic Helix-Loop-Helix Transcription Factors/metabolism , Branchial Region/embryology , Branchial Region/metabolism , Cichlids/genetics , Cichlids/metabolism , Embryo, Nonmammalian , Gene Expression Regulation, Developmental , Heart/embryology , Intestines/embryology , Intestines/metabolism , Mesoderm/embryology , Mesoderm/metabolism , Myocardium/metabolism , Peripheral Nervous System/embryology , Peripheral Nervous System/metabolism , Sequence Homology , Skull/embryology , Skull/metabolism , Tooth/embryology , Tooth/metabolism , Zebrafish/embryology , Zebrafish/genetics , Zebrafish/metabolism , Zebrafish Proteins/genetics , Zebrafish Proteins/metabolism
8.
J Org Chem ; 85(22): 14516-14526, 2020 11 20.
Article in English | MEDLINE | ID: mdl-32627554

ABSTRACT

Kinetic separation of the commercially available cis/trans-(+)-limonene oxide mixture by ring opening with primary phosphido nucleophiles LiPHR (R = ferrocenyl, Ph, Cy, t-Bu, Mes* (Mes* = 2,4,6-(t-Bu)3C6H2)), followed by treatment with aqueous NH4Cl and H2O2, gave unreacted cis-(+)-limonene oxide and diastereoenriched mixtures of the secondary phosphine oxides (SPOs) PHR(trans-(+)-Lim-OH)(O), which could be separated by chromatography and/or recrystallization. This one-pot synthesis uses a cheap chiral material and commercially available primary phosphines to control the configuration of the new P-stereogenic SPOs, which are potentially useful as ligands for metal complexes in asymmetric catalysis.

9.
Org Lett ; 14(16): 4238-41, 2012 Aug 17.
Article in English | MEDLINE | ID: mdl-22870878

ABSTRACT

Although the pyramidal inversion barriers in diphosphines (R(2)P-PR(2)) are similar to those in phosphines (PR(3)), P-stereogenic chiral diphosphines have rarely been exploited as building blocks in asymmetric synthesis. The synthesis, reactivity, and resolution of the benzodiphosphetane trans-1,2-(P(t-Bu))(2)C(6)H(4) are reported. Alkylation with MeOTf followed by addition of a nucleophile gave the useful C(2)-symmetric P-stereogenic ligand BenzP* and novel analogues.

SELECTION OF CITATIONS
SEARCH DETAIL