Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
Add more filters










Publication year range
1.
Zootaxa ; 5263(3): 335-364, 2023 Apr 06.
Article in English | MEDLINE | ID: mdl-37044982

ABSTRACT

We revise the Portuguese spiders of the genus Harpactea Bristowe, 1939 (Araneae: Dysderidae). The following seven new species are described: H. adicensis sp. nov., H. crespoi sp. nov., H. dolanskyi sp. nov., H. henriquesi sp. nov., H. korenkoi sp. nov., H. krejcii sp. nov. and H. pekari sp. nov. In three species, H. algarvensis Ferrández, 1990, H. minoccii Ferrández, 1982 and H. tavirensis Wunderlich, 2020 the females are described for the first time. The Portuguese Harpactea spiders belong to two species groups, namely the hombergi group and the corticalis group (sensu Deeleman-Reinhold 1993). The majority of the Portuguese representatives of the corticalis group probably constitute a monophyletic group endemic for the Iberian peninsula, the minoccii subgroup Ferrández, 1990. The synapomorphy of this clade is the unique position of partners during copulation: the male grasps one of the female's chelicerae between his chelicerae. The males' chelicerae are morphologically adapted for this behaviour. Due to this unusual position during copulation the female genitalia are more distant from the male than in other Harpactea species. Therefore, the pedipalps are more elongated . Furthermore, the males of this subgroup possess larger basal part of male copulatory organ (the tegulum), where the ejaculate is stored before copulation. We observed that the males of this subgroup invest significantly more time into single copulation than the other representatives of the corticalis group with smaller tegulum. Therefore, enlargement of the tegulum might reflect different sperm competition strategy, in which males invest more ejaculate in each copulation. In Portugal, Harpactea spiders are frequently found under woody plants that produce slowly decomposing leaf litter, usually Quercus spp., or introduced Eucalyptus sp. These spiders require slightly humid substratum.


Subject(s)
Spiders , Female , Male , Animals , Portugal , Seeds , Wood , Copulation , Animal Distribution
2.
Sci Rep ; 13(1): 6943, 2023 04 28.
Article in English | MEDLINE | ID: mdl-37117271

ABSTRACT

The diversity, host specificity, and physiological effects of endosymbiotic bacteria in spiders (Araneae) are poorly characterized. We used 16S rDNA sequencing to evaluate endosymbionts in the cephalothorax and legs of a wolf spider Pardosa agrestis. We tested the effects of feeding once or twice daily with fruit flies, aphids, or starved and compared them to those of syntopically occurring Pardosa palustris. The feeding increased traveled distance up to five times in some of the groups provisioned with food relative to the starved control. The Shannon diversity t-test revealed significant differences between these component communities of the two spider species. The increased frequency of feeding with fruit flies, but not aphids, increased the dominance and decreased the alpha diversity of OTUs. The obligate or facultative endosymbionts were present in all analyzed spider individuals and were represented mostly by Rickettsiella, Rhabdochlamydia, Spiroplasma, and the facultative intracellular parasite Legionella. Vertically transmitted endosymbionts were less common, represented by Wolbachia pipientis and Rickettsia sp. H820. The relative abundance of Mycoplasma spp. was negatively correlated with provisioned or killed aphids. In conclusion, the tissues of Pardosa spiders host tremendously diverse assemblages of bacteria, including obligate or facultative endosymbionts, with yet unknown phenotypic effects.


Subject(s)
Coxiellaceae , Rickettsia , Spiders , Animals , Spiders/microbiology , Symbiosis , Host Specificity , Drosophila
3.
Sci Rep ; 12(1): 20703, 2022 12 01.
Article in English | MEDLINE | ID: mdl-36456609

ABSTRACT

Arbuscular mycorrhizal (AM) fungi can support the establishment of mycotrophic plants in new environments. However, the role of mycorrhizal symbiosis in interactions between perennial and weedy annual plants is not well understood. In our current study, we examine how widespread generalist AM fungi and soil disturbance, including disturbance of AM fungal networks (CMNs), affect the performance of two late-successional perennial plants of Central Europe, Senecio jacobaea and Crepis biennis, co-occurring with weedy annual forbs, Conyza canadensis and Erigeron annuus. Although presence of weedy annual E. annuus or C. canadensis did not affect the performance of the paired perennials, AM fungi supported perennial C. biennis in competition with weedy annual E. annuus. However, this AM-aided underpinning was independent of disturbance of CMNs. Conversely, although AM fungi benefited perennial S. jacobaea, this did not affect its competitive abilities when grown with weedy annual C. canadensis. Similarly, soil disturbance, independent of AM fungal presence, improved plant tissue P and biomass production of S. jacobaea, but not its competitive abilities. Our results show AM fungi may be advantageous for perennial plants growing in competition with weedy annual plants. Therefore, maintaining healthy soils containing an abundance of AM fungi, may encourage late successional perennial plants, potentially limiting establishment of weedy annual plant species.


Subject(s)
Marijuana Abuse , Mycorrhizae , Senecio , Plant Weeds , Soil
4.
Sci Rep ; 12(1): 14745, 2022 08 30.
Article in English | MEDLINE | ID: mdl-36042361

ABSTRACT

Exposure to numerous chemicals disrupts the spiders' locomotion. Spiders, particularly epigeic spiders, are dependent on their locomotory activities to search for prey, hide from their enemies, and perform sexual reproduction and subsequent parental care. Among the best-known compounds that inhibit the locomotion of arthropods are neonicotinoids. Despite spiders are less affected by the neonicotinoids than insects due to the sequence differences in their acetylcholine receptors, they are not resistant to these compounds. We hypothesized that acute exposure to a broad spectrum of neonicotinoids suppresses the traveled distance, mean velocity, and maximum velocity in epigeic spiders. As a model species, we used adults of Pardosa lugubris. We tested commercial formulations of thiamethoxam, acetamiprid, and thiacloprid. We tested each of the neonicotinoids in the maximum and minimum concentrations recommended for foliar applications. We applied them under controlled conditions dorsally by spraying them directly on the spiders or exposing the spiders to the tarsal contact with neonicotinoid residues. Control groups consisted of 31 individuals; treated groups consisted of 10-21 individuals. We found that a broad spectrum of neonicotinoids temporarily suppresses the traveled distance in epigeic spiders. At 1 h after application, all the three tested neonicotinoid insecticides induced declines in the traveled distance, but this effect mostly disappeared when tested at 24 h after the application. The decrease in the traveled distance was associated with substantial temporary decreases in the mean and maximum velocities. Despite differences among modalities, all three insecticides caused multiple adverse effects on the locomotory parameters in any tested concentrations. It remains to test what would be the lowest safe concentration for the chronic exposure to neonicotinoids in epigeic spiders.


Subject(s)
Insecticides , Spiders , Animals , Insecticides/toxicity , Locomotion , Neonicotinoids/toxicity , Nitro Compounds/toxicity , Thiamethoxam/pharmacology
5.
Environ Microbiol Rep ; 14(5): 732-741, 2022 10.
Article in English | MEDLINE | ID: mdl-35924424

ABSTRACT

Arbuscular mycorrhizal fungi (AMF) provide crucial support for the establishment of plants in novel environments. We hypothesized that the OTU/genus richness and diversity of soil- and root-associated AMF associated with alien plant species in their exotic ranges are lower than those in their native ranges. We examined the root-associated and soil-dwelling AMF of 11 invasive plant species in their native and exotic ranges in the United States and Europe by DNA sequencing of the ITS2 locus. Examined root-associated AMF assemblages were simplified, which manifested as the loss of several AMF genera in the exotic ranges of the plants. These fungal assemblages were also characterized by greater dominance and simplification of the fungal assemblages. The dominant fungal genera were present regardless of whether their host plants were in their native or exotic ranges. Interestingly, both the native and invaded soils hosted diverse local AMF assemblages. Therefore, alien plant invasions were not limited to soils with low AMF diversity. Some AMF taxa could be context-dependent passengers rather than drivers of alien plant invasions. Further studies should identify functions of AMF missing or less abundant in roots of plants growing in exotic ranges.


Subject(s)
Mycorrhizae , Introduced Species , Mycorrhizae/genetics , Plant Roots/microbiology , Plants , Soil , Soil Microbiology
6.
PLoS One ; 17(7): e0261695, 2022.
Article in English | MEDLINE | ID: mdl-35797267

ABSTRACT

The mygalomorph spiders of the family Atypidae are among the most archaic spiders. The genus Atypus Latreille, 1804 occurs in Eurasia and northern Africa, with a single enigmatic species, Atypus snetsingeri Sarno, 1973, known only from a small area in southeastern Pennsylvania in eastern USA. A close relationship to European species could be assumed based on geographic proximity, but A. snetsingeri more closely resembled Asian species. This study was undertaken to learn more about the genetics of A. snetsingeri, its habitat requirements and natural history. Molecular markers (CO1 sequences) were compared to available data for other atypids and showed that A. snetsingeri is identical with A. karschi Dönitz, 1887 native to East Asia. Natural history parameters in Pennsylvania were also similar in every respect to A. karschi in Japan, therefore, we propose that the spider is an introduced species and the specific epithet snetsingeri is relegated to a junior synonym of A. karschi. Cytogenetic analysis showed an X0 sex chromosome system (42 chromosomes in females, 41 in males) and we also detected nucleolus organizing regions and heterochromatin, the latter for the first time in the Atypoidea. In Pennsylvania the spider is found in a variety of habitats, from forests to suburban shrubbery, where the above-ground webs are usually attached vertically to trees, shrubs, or walls, although other webs are oriented horizontally near the ground. Prey include millipedes, snails, woodlice, carabid beetles and earthworms. Atypus karschi is the first known case of an introduced purse-web spider. It is rarely noticed but well-established within its range in southeastern Pennsylvania.


Subject(s)
Spiders , Animals , Ecosystem , Female , Forests , Male , Pennsylvania , Sex Chromosomes , Spiders/genetics
7.
J Econ Entomol ; 115(5): 1472-1479, 2022 10 12.
Article in English | MEDLINE | ID: mdl-35674716

ABSTRACT

The northern yellow sac spider Cheiracanthium mildei L. Koch, is expanding its range to Central Europe, especially to synanthropic habitats. The spiders become unwanted companions because of the unreasonable fear - arachnophobia, and estetic reason - silk retreats in corners, capturing dust. The most commonly used substances against spiders are pesticides, which are, however, toxic. In our work we tested the attraction or repellence of 15 essential oils (EO) from plants representing eight families to C. mildei. Our research has shown a significant repellent effect of EO from three plants, namely Syzygium aromaticum (L.) Merr. et L. M. Perry (Myrtales: Myrtaceae), Ananas comosus (L.) Merr. (Poales: Bromeliaceae) and Musa sp. (L.) (Zingiberales: Musaceae). In contrast, some EOs appeared to have an attraction effect, particularly Carum carvi L. (Apiales: Apiaceae). Zingiber officinale Roscoe (Zingiberales: Zingiberaceae) reduced the tendency of spiders to construct the silken retreat. S. aromaticum, A. sativus, Musa sp. and Z. officinale have the potential to be used as natural repellents against spiders.


Subject(s)
Insect Repellents , Musa , Oils, Volatile , Spiders , Animals , Dust , Insect Repellents/pharmacology , Oils, Volatile/pharmacology , Phobic Disorders , Plant Oils/pharmacology , Plants , Silk
8.
Environ Sci Pollut Res Int ; 29(11): 16091-16102, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34647210

ABSTRACT

Anthropogenic habitats that are contaminated by toxic elements were recently shown to host abundant and diverse assemblages of bees and wasps (Hymenoptera: Aculeata), including numerous threatened species. However, toxic elements adversely affect insect fitness. We address the effects of toxic elements on aculeate inquilines that occupy Lipara lucens-induced galls on the common reed, Phragmites australis. We hypothesized that contamination of potential nesting and feeding habitats is associated with adverse changes in bee and wasp populations that are attracted in these environments. To address this hypothesis, we analyzed the contents of As, Cd, Cu, Pb, Zn, Fe, and S in site-matched samples of soil, reed galls, and crabronid wasp bodies and correlated them with abundance and species richness of aculeate hymenopterans in reed galls and with the number of larvae in nests of the eudominant hymenopteran, Pemphredon fabricii. The common reed was present at all the examined sites, and L. lucens-induced galls were present at all but one sampling site; the single exception was the sampling site with the highest contents of four of the seven analyzed elements. The alpha diversity of gall-associated aculeate inquilines, abundance of P. fabricii, and number of prepupae per nest of P. fabricii were not correlated with the contents of any of the seven analyzed toxic elements. We found P. fabricii to be abundantly present in habitats with extreme concentrations of toxic elements. Exposed P. fabricii accumulated Cd, Cu, and Pb, while they eliminated Fe and Zn. The obtained data did not support the hypothesis that heavy metal contamination of anthropogenic sites affects P. fabricii and other reed gall-associated aculeates.


Subject(s)
Diptera , Wasps , Animals , Bees , Ecosystem , Insecta , Larva
9.
Database (Oxford) ; 20212021 10 15.
Article in English | MEDLINE | ID: mdl-34651181

ABSTRACT

Spiders are a highly diversified group of arthropods and play an important role in terrestrial ecosystems as ubiquitous predators, which makes them a suitable group to test a variety of eco-evolutionary hypotheses. For this purpose, knowledge of a diverse range of species traits is required. Until now, data on spider traits have been scattered across thousands of publications produced for over two centuries and written in diverse languages. To facilitate access to such data, we developed an online database for archiving and accessing spider traits at a global scale. The database has been designed to accommodate a great variety of traits (e.g. ecological, behavioural and morphological) measured at individual, species or higher taxonomic levels. Records are accompanied by extensive metadata (e.g. location and method). The database is curated by an expert team, regularly updated and open to any user. A future goal of the growing database is to include all published and unpublished data on spider traits provided by experts worldwide and to facilitate broad cross-taxon assays in functional ecology and comparative biology. Database URL:https://spidertraits.sci.muni.cz/.


Subject(s)
Arthropods , Spiders , Animals , Databases, Factual , Ecosystem , Phenotype , Spiders/genetics
10.
Sci Rep ; 11(1): 8496, 2021 04 19.
Article in English | MEDLINE | ID: mdl-33875743

ABSTRACT

Spiders were recently shown to be adversely affected by field-realistic concentrations of a broad scale of neonicotinoid insecticides. Among the reported effects of neonicotinoids on invertebrates were declines in lipid biosynthesis and upregulation of ß-oxidation, while vertebrate models suggest increased adipogenesis following treatment with neonicotinoids. Therefore, we hypothesized that there exists synergy between the effects of diet and concurrent exposure to field-realistic concentrations of neonicotinoid insecticides. To address this hypothesis, we fed first instars of the large wolf spider Hogna antelucana with two types of diets and exposed them to field-realistic concentrations of three formulations of neonicotinoids (thiamethoxam, thiacloprid and acetamiprid). We then measured the growth of the tested spiders; the lipid and protein content of their bodies; and their behavior, including ballooning, rappelling, and locomotor parameters. The two tested diets consisted of casein-treated and sucrose-treated Drosophila melanogaster. The dietary treatments affected the lipid and protein content of the spiders, their body weight and carapace length but did not affect any of the measured behavioral parameters. Surprisingly, we did not find any effects of acute exposure to neonicotinoid insecticides on the lipid or protein reserves of spiders. Exposure to neonicotinoids altered the behavior of the spiders as reported previously in other spider species; however, these effects were not affected by dietary treatments. Overall, the dietary treatments did not have any major synergy with acute exposure to field-realistic concentrations of neonicotinoid insecticides.


Subject(s)
Drosophila melanogaster/physiology , Insecticides/toxicity , Neonicotinoids/toxicity , Nutritional Status , Spiders/physiology , Toxicity Tests/methods , Animals , Arthropod Proteins/metabolism , Body Weight , Drosophila melanogaster/drug effects , Lipids/analysis , Spiders/drug effects
11.
Sci Rep ; 10(1): 20287, 2020 11 20.
Article in English | MEDLINE | ID: mdl-33219310

ABSTRACT

In a globalized world, plant invasions are common challenges for native ecosystems. Although a considerable number of invasive plants form arbuscular mycorrhizae, interactions between arbuscular mycorrhizal (AM) fungi and invasive and native plants are not well understood. In this study, we conducted a greenhouse experiment examining how AM fungi affect interactions of co-occurring plant species in the family Asteracea, invasive Echinops sphaerocephalus and native forb of central Europe Inula conyzae. The effects of initial soil disturbance, including the effect of intact or disturbed arbuscular mycorrhizal networks (CMNs), were examined. AM fungi supported the success of invasive E. sphaerocephalus in competition with native I. conyzae, regardless of the initial disturbance of CMNs. The presence of invasive E. sphaerocephalus decreased mycorrhizal colonization in I. conyzae, with a concomitant loss in mycorrhizal benefits. Our results confirm AM fungi represent one important mechanism of plant invasion for E. sphaerocephalus in semi-natural European grasslands.


Subject(s)
Echinops Plant/microbiology , Glomeromycota/physiology , Introduced Species , Inula/microbiology , Mycorrhizae/physiology , Echinops Plant/physiology , Europe , Grassland , Inula/physiology , Soil Microbiology
12.
Sci Rep ; 10(1): 19315, 2020 11 09.
Article in English | MEDLINE | ID: mdl-33168869

ABSTRACT

Carabids are generalist predators that contribute to the agricultural ecosystem service of seedbank regulation via weed seed predation. To facilitate adoption of this ecosystem services by farmers, knowledge of weed seed predation and the resilience of seedbank regulation with co-varying availability of alternative prey is crucial. Using assessments of the seedbank and predation on seed cards in 57 cereal fields across Europe, we demonstrate a regulatory effect on the soil seedbank, at a continental scale, by groups formed of omnivore, seed-eating (granivore + omnivore) and all species of carabids just prior to the crop-harvest. Regulation was associated with a positive relationship between the activity-density of carabids and seed predation, as measured on seed cards. We found that per capita seed consumption on the cards co-varied negatively with the biomass of alternative prey, i.e. Aphididae, Collembola and total alternative prey biomass. Our results underline the importance of weed seedbank regulation by carabids, across geographically significant scales, and indicate that the effectiveness of this biocontrol may depend on the availability of alternative prey that disrupt the weed seed predation.


Subject(s)
Agriculture/methods , Coleoptera/physiology , Ecosystem , Plant Weeds/physiology , Seeds/physiology , Animals , Biomass , Ecology , Edible Grain , Europe , Hordeum , Linear Models , Predatory Behavior , Triticum
13.
Sci Rep ; 10(1): 7019, 2020 04 27.
Article in English | MEDLINE | ID: mdl-32341403

ABSTRACT

Neonicotinoid insecticides are increasingly recognized for their role as information disruptors by modifying the chemical communication system of insects and therefore decreasing the chances of reproduction in target insects. However, data from spiders are lacking. In the present study, we tested the responses of males of a common agrobiont spider, Pardosa agrestis, to the application of field-realistic concentration of acetamiprid, which was formulated as Mospilan, and trace amounts of thiacloprid, which was formulated as Biscaya. We applied fresh or 24-h-old residues of Mospilan or Biscaya to the males just prior to the experiment or treated only the surface of a tunnel containing female draglines. We evaluated the ability of the males to recognize female cues from female dragline silk in a Y-maze. The field-realistic, sublethal doses of Mospilan altered pheromone-guided behavior. The choice of the tunnel with female draglines by males was hampered by tarsal treatment of the males with 24 h-old residues of Mospilan. The mating dance display was commonly initiated in control males that came into contact with female draglines and was suppressed by the Mospilan treatments in all three experimental settings. Some males only initiated the mating dance but did not manage to complete it; this was particularly true for males that were treated tarsally with fresh Mospilan residues, as none of these males managed to complete the mating dance. All three experimental settings with Mospilan decreased the frequency of males that managed to both select the tunnel with female draglines and complete the mating dance. The responses to the low-dose Biscaya were much milder and the study was not sufficiently powered to confirm the effects of Biscaya; however, the surprisingly observed trends in responses to very low Biscaya concentrations call for further analyses of long-term effects of trace amounts of neonicotinoids on the pheromone-guided behavior of spiders. These are the first conclusive data regarding the effects of commercially available formulations of neonicotinoid insecticides on the intraspecific chemical communication of spiders.


Subject(s)
Chemoreceptor Cells/drug effects , Neonicotinoids/pharmacology , Spiders/drug effects , Animals , Female , Male , Sexual Behavior, Animal , Spiders/metabolism , Spiders/physiology
14.
Sci Rep ; 10(1): 7077, 2020 04 27.
Article in English | MEDLINE | ID: mdl-32341495

ABSTRACT

Neonicotinoid insecticides are associated with a decline in the diversity and distribution of bees and wasps (Hymenoptera: Aculeata). The effects of neonicotinoids on the metamorphosis of aculeates have never been addressed in detail; however, recent evidence suggests that neonicotinoids induce wing abnormalities. We hypothesized that the metamorphosis success of bees and wasps differs in response to contact exposure to field-realistic concentrations of neonicotinoid insecticides or in response to combined exposure to neonicotinoid insecticides and benzimidazole fungicides. We treated prepupae of the model crabronid wasp Pemphredon fabricii with field-realistic concentrations of four neonicotinoids, acetamiprid, imidacloprid, thiacloprid and thiamethoxam, and/or with the benzimidazole fungicide thiabendazole. Treatment with acetamiprid or imidacloprid decreased the pupation rates to only 39% and 32%, respectively. Treatment with thiacloprid or thiamethoxam did not affect the pupation rate when applied alone, but the subsequent treatment of thiacloprid- or thiamethoxam-treated prepupae with thiabendazole led to significant decreases in pupation rates. A high concentration of acetamiprid, which severely affected the pupation rates, had moderate effects on metamorphosis into adults, resulting in 53% metamorphosis success (as opposed to 95% metamorphosis success in the water-treated group). However, imidacloprid or thiamethoxam treatment resulted in only 5%-10% metamorphosis success into adults. Overall survival decreased in response to treatment with any of the neonicotinoids or benzimidazoles or their combinations, with extremely low survival (<2%) following combined treatment with imidacloprid and thiabendazole or thiamethoxam and thiabendazole. In conclusion, neonicotinoids alter insect metamorphosis success, which can be further potentiated by their combination with other agrochemicals, such as benzimidazoles.


Subject(s)
Insecticides/pharmacology , Metamorphosis, Biological/drug effects , Neonicotinoids/pharmacology , Wasps/growth & development , Animals , Pupa/growth & development
15.
Pest Manag Sci ; 76(3): 1128-1133, 2020 Mar.
Article in English | MEDLINE | ID: mdl-31583818

ABSTRACT

BACKGROUND: Pesticides or plant protection products (PPPs) are risky for spiders in or near agricultural landscapes. However, the risks posed by pesticides to spiders are largely understudied compared with the risks to pollinators. Here, we investigated the distribution of PPPs in adult females, cocoons and webs with prey remnants of Phylloneta impressa. RESULTS: Three sample types were collected from the tops of rapeseed on 18 July (before the harvest). Three different ultraperformance liquid chromatograph coupled with triple-quadrupole tandem mass spectrometer (UHPLC-QqQ-MS/MS) analyses were performed: (i) pesticides and selected metabolites; (ii) quaternary ammonium pesticides (quats); and (iii) pyrethroids. Overall, 23 compounds, 22 pesticides and the metabolite imidacloprid-urea were detected. The array of pesticides was largest in webs with prey remnants, and according to evaluation via redundancy analysis (RDA), pesticides were similar in spiders and cocoons; however, data inspection revealed differences in pesticide distribution among these samples. Clothianidin was detected in only female spiders, whereas thiamethoxam prevailed in webs with remnants of prey, and acetamiprid, thiacloprid and imidacloprid were found in all three matrices. One of the most abundant compounds was chlormequat, indicating that quats should be considered a possible risk for these spiders. None of the pyrethroids were detected despite being applied in the sampling area, indicating rapid biodegradation. By contrast, some pesticides were detected despite not being applied in the field, indicating that the source of contamination is prey or particles carried by wind and attached to webs. CONCLUSION: Overall, the results indicate the different distribution or behavior of several pesticides in the spider matrices. © 2019 Society of Chemical Industry.


Subject(s)
Spiders , Animals , Chromatography, Liquid , Female , Pesticides , Pyrethrins , Tandem Mass Spectrometry
16.
Sci Rep ; 9(1): 15895, 2019 11 04.
Article in English | MEDLINE | ID: mdl-31685882

ABSTRACT

Neonicotinoids are thought to have negligible repellent or anti-feeding effects. Based on our preliminary observations, we hypothesized that the contamination of spider prey with commonly used neonicotinoids has repellent or feeding deterrent effects on spiders. We tested this hypothesis by providing prey treated or not with field-realistic concentrations of neonicotinoids to the spiders and determining the number of (a) killed only and (b) killed and eaten prey. We exposed adult freshly molted and starved Pardosa agrestis, a common agrobiont lycosid species, to flies treated with neonicotinoids (acetamiprid, imidacloprid, thiacloprid and thiamethoxam) at field-realistic concentrations or with distilled water as a control. There were no effects of the exposure of the prey to neonicotinoids on the number of flies captured. However, the spiders consumed less of the prey treated with neonicotinoids compared to the ratio of control prey consumed, which resulted in increased overkilling (i.e., killing without feeding). In female P. agrestis, the overkilling increased from only 2.6% of control flies to 25-45% of neonicotinoid-treated flies. As the spiders avoided consuming the already captured neonicotinoid-treated prey, the sublethal effects of neonicotinoids extend beyond the simple attractivity/deterrence of the prey itself. The present study demonstrated that prey overkilling serves as a physiological response of spiders to the contact with the prey contaminated with agrochemicals. We speculate that primary contact with neonicotinoids during prey capture may play a role in this unexpected behavior.


Subject(s)
Feeding Behavior/drug effects , Insecticides/toxicity , Neonicotinoids/toxicity , Spiders/physiology , Animals , Farms , Female , Male , Nitro Compounds/toxicity
17.
Mycorrhiza ; 29(6): 567-579, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31724087

ABSTRACT

Despite the crucial importance of arbuscular mycorrhizal fungi (AMF) for numerous processes within terrestrial ecosystems, knowledge of the determinants of AMF community structure still is limited, mainly because of the limited scope of the available individual case studies which often only include a few environmental variables. Here, we describe the AMF diversity of mid-European meadows (mown or regularly cut grasslands, or recently abandoned lands where grasslands established spontaneously) within a considerably heterogeneous landscape over a scale of several hundred kilometers with regard to macroclimatic, microclimatic, and soil parameters. We include data describing the habitat (including vegetation type), geography, and climate, and test their contribution to the structure of the AMF communities at a regional scale. We amplified and sequenced the ITS 2 region of the ribosomal DNA operon of the AMF from soil samples using nested PCR and Illumina pair-end amplicon sequencing. Habitat (especially soil pH) and geographical parameters (spatial distance, altitude, and longitude) were the main determinants of the structure of the AMF communities in the meadows at a regional scale, with the abundance of genera Septoglomus, Paraglomus, Archaeospora, Funneliformis, and Dominikia driving the main response. The effects of climate and vegetation type were not significant and were mainly encompassed within the geography and/or soil pH effects. This study illustrates how important it is to have a large set of environmental metadata to compare the importance of different factors influencing the AMF community structure at large spatial scales.


Subject(s)
Mycobiome , Mycorrhizae , DNA, Fungal , Ecosystem , Geography , Grassland , Soil , Soil Microbiology
18.
PLoS One ; 14(11): e0224384, 2019.
Article in English | MEDLINE | ID: mdl-31710616

ABSTRACT

Tarantula urticating setae are modified setae located on the abdomen or pedipalps, which represent an effective defensive mechanism against vertebrate or invertebrate predators and intruders. They are also useful taxonomic tools as morphological characters facilitating the classification of New World theraphosid spiders. In the present study, the morphology of urticating setae was studied on 144 taxa of New World theraphosids, including ontogenetic stages in chosen species, except for species with urticating setae of type VII. The typology of urticating setae was revised, and types I, III and IV were redescribed. The urticating setae in spiders with type I setae, which were originally among type III or were considered setae of intermediate morphology between types I and III, are newly considered to be ontogenetic derivatives of type I and are described as subtypes. Setae of intermediate morphology between that of body setae and type II urticating setae that were found in Iridopelma hirsutum and Antillena rickwesti may provide another evidence that type II urticating setae evolved from body setae. It is supposed that the fusion of barbs with the shaft may lead to the morphology of type II setae. As the type II setae of Aviculariinae evolved independently to the UrS of Theraphosinae and both subfamilies represent two non-sister groups, this should explain the differences in the morphology of body setae in Aviculariinae and Theraphosinae. The terminology of "barbs" and "reversed barbs" was revised and redefined, newly emphasizing the real direction of barbs.


Subject(s)
Sensilla/anatomy & histology , Spiders/anatomy & histology , Animals , Spiders/classification
19.
Sci Rep ; 9(1): 12272, 2019 08 22.
Article in English | MEDLINE | ID: mdl-31439878

ABSTRACT

Agroecosystems are subject to regular disturbances that cause extinction or migration of much of their fauna, followed by recolonization from surrounding refuges. In small-sized aeronaut spiders, such recolonization is potentiated by their ability to rappel and balloon. These are complex behaviors that we hypothesized to be affected by neurotoxins, namely, neonicotinoids. We tested this hypothesis using two common farmland spider species, Oedothorax apicatus (Linyphiidae) and Phylloneta impressa (Theridiidae). The spiders were topically exposed by dorsal wet application or tarsal dry exposure to commercial neonicotinoid formulations Actara 25 WG, Biscaya 240 OD, Mospilan 20 SP and Confidor 200 OD at concentrations that are recommended for application in agriculture. Contact exposure to neonicotinoids suppressed the ability of spiders to produce the major ampullate fiber and anchor it to the substratum by piriform fibrils. Contact exposure to neonicotinoids also suppressed the ballooning behavior that was manifested by climbing to elevated places, adopting a tiptoe position and producing silk gossamer in the wind. Impaired ability of affected common farmland spiders to quickly recolonize disturbed agroecosystems by silk-mediated dispersal may explain their decline in multiple farmland ecosystems, in which neonicotinoids are applied.


Subject(s)
Ecosystem , Farms , Insecticides/pharmacology , Neonicotinoids/pharmacology , Silk/metabolism , Spiders/metabolism , Animals
20.
Sci Rep ; 9(1): 5724, 2019 04 05.
Article in English | MEDLINE | ID: mdl-30952926

ABSTRACT

Neonicotinoids are very effective in controlling crop pests but have adverse effects on predators and pollinators. Spiders are less sensitive to neonicotinoids compared to insects because of the different structure of their acetylcholine receptors, the binding targets of neonicotinoids. We tested whether short-term exposure to neonicotinoids affected the predation rate in different densities of prey of spiders and led to their paralysis or eventual death. To examine these effects, we topically exposed dominant epigeic, epiphytic and sheet-weaving farmland spiders to four widely used neonicotinoids (imidacloprid, thiamethoxam, acetamiprid and thiacloprid). We applied the neonicotinoids at concentrations recommended by the manufacturers for spray application under field conditions. Short-term exposure to the formulations of all four tested neonicotinoids had adverse effects on the predation rate of spiders, with imidacloprid (Confidor) associated with the most severe effects on the predation rate and exhibiting partial acute lethality after one hour (15-32%). Acetamiprid also displayed strong sublethal effects, particularly when applied dorsally to Philodromus cespitum. Day-long exposure to dorsally applied acetamiprid or thiacloprid led to paralysis or death of multiple Linyphiidae spp., with the effects particularly prominent in males. To conclude, we provided multiple lines of evidence that short-term exposure to neonicotinoids, which were applied at recommended field concentrations, caused severe health effects or death in multiple families of spiders. Even acetamiprid caused strong effects, despite being subject to less strict regulations in the European Union, compared with those for imidacloprid because of claims of its negligible off-target toxicity.


Subject(s)
Insecticides/pharmacology , Neonicotinoids/pharmacology , Predatory Behavior/drug effects , Spiders/drug effects , Animals , Nitro Compounds/pharmacology , Thiazines/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...