Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Language
Publication year range
1.
J Orthod Sci ; 12: 44, 2023.
Article in English | MEDLINE | ID: mdl-37881660

ABSTRACT

OBJECTIVE: Sodium fluoride (NaF) is commonly used in oral hygiene products, leading to corrosion and reduced archwire properties. In addition, ion release can cause allergies and become toxic to the oral environment. This research aimed to observe the Nickel (Ni) and Copper (Cu) ions released that affected initial corrosion as deflection and surface roughness changed in the Copper-Nickel-Titanium (CuNiTi) archwire. MATERIAL AND METHODS: The total samples were 54 copper-nickel-titanium (CuNiTi-Tanzo, American orthodontic®) archwires immersed in three solutions. Artificial saliva was used in the control group NaF 0.05%, and a NaF 0.15% solution was used in the intervention groups (n = 6). The groups were divided into three observation times (two, four, and six weeks). Cu and Ni ions released, deflection, the surface roughness of the archwires, and solution acidities were recorded and analyzed. RESULTS: Ni and Cu ion release and surface roughness of the CuNiTi archwires significantly increased as the NaF concentration increased. The Ni ion release improved along the immersion period; the opposite was true for the Cu ion release. The solutions became more alkaline after the CuNiTi archwires were immersed. The pH and the archwires' deflections of the three solutions did not show significant differences. CONCLUSION: The NaF increased Cu-Ni ion release and surface roughness but not the deflection force of the CuNiTi. The increase was affected by the concentration and duration of immersion.

2.
Vet World ; 16(3): 638-649, 2023 Mar.
Article in English | MEDLINE | ID: mdl-37041844

ABSTRACT

Vannamei shrimp (Litopenaeus vannamei) is an important food commodity of economic benefit due to its high price, low susceptibility to disease, and popularity for consumption. These advantages have led many farmers to cultivate vannamei shrimp. Efforts are underway to improve the aquaculture performance of this species, including the use of probiotics, which are non-pathogenic bacteria that aid in digestion and help fight disease. Probiotics are usually obtained from the intestines of vannamei shrimp or the culture environment. They are low-cost, non-pathogenic, and largely non-toxic source of antibiotics and are able to synthesize various metabolites that have antibacterial functions and applications. Research on probiotic use has primarily been focused on increasing vannamei shrimp aquaculture production. Bacterial species, such as Lactobacillus or Nitrobacter, can be administered orally, by injection, or as a supplement in aquaculture water. Probiotics help to improve survival rate, water quality, immunity, and disease resistance through space competition with disease-causing bacteria, such as Vibrio spp. An increased number of probiotic bacteria suppresses the growth and presence of pathogenic bacteria, which lowers disease susceptibility. In addition, probiotic bacteria also aid digestion by breaking down complex compounds into simpler substances that the body can absorb more easily. This mechanism improves growth performance in terms of weight, length, and feed conversion ratio. This review aimed to provide information regarding contribution of probiotic to improve vannamei shrimp production in aquaculture.

3.
Preprint in English | medRxiv | ID: ppmedrxiv-22276209

ABSTRACT

BackgroundA well-known blood biomarker (soluble fms-like tyrosinase-1 [sFLT-1]) for preeclampsia, i.e., a pregnancy disorder, was found to predict severe COVID-19, including in males. True biomarker may be masked by more-abrupt changes related to endothelial instead of placental dysfunction. This study aimed to identify blood biomarkers that represent maternal-fetal interface tissues for predicting preeclampsia but not COVID-19 infection. MethodsThe surrogate transcriptome of the tissues was determined by that in maternal blood, utilizing four datasets (n=1,354) which were collected before the COVID-19 pandemic. Applying machine learning, a preeclampsia prediction model was chosen between those using blood transcriptome (differentially expressed genes [DEGs]) and the blood-derived surrogate for the tissues. We selected the most predictive model by the area under receiver operating characteristic (AUROC) using a dataset for developing the model, and well-replicated in datasets either with or without intervention. To identify eligible blood biomarkers that predicted any-onset preeclampsia from the datasets but did not predict positives in the COVID-19 dataset (n=47), we compared several methods of predictor discovery: (1) the best prediction model; (2) gene sets by standard pipelines; and (3) a validated gene set for predicting any-onset preeclampsia during the pandemic (n=404). We chose the most predictive biomarkers from the best method with the significantly largest number of discoveries by a permutation test. The biological relevance was justified by exploring and reanalyzing low- and high-level, multi-omics information. ResultsA prediction model using the surrogates developed for predicting any-onset preeclampsia (AUROC of 0.85, 95% confidence interval [CI] 0.77 to 0.93) was the only that was well-replicated in an independent dataset with no intervention. No model was well-replicated in datasets with a vitamin D intervention. None of the blood biomarkers with high weights in the best model overlapped with blood DEGs. Blood biomarkers were transcripts of integrin-5 (ITGA5), interferon regulatory factor-6 (IRF6), and P2X purinoreceptor-7 (P2RX7) from the prediction model, which was the only method that significantly discovered the eligible blood biomarkers (n=3/100 combinations, 3.0%; P=.036). Most of the predicted events (73.70%) among any-onset preeclampsia were cluster A as defined by ITGA5 (Z-score [≥]1.1), but were only a minority (6.34%) among positives in the COVID-19 dataset. The remaining were the predicted events (26.30%) among any-onset preeclampsia or those among COVID-19 infection (93.66%) if IRF6 Z-score was [≥]-0.73 (clusters B and C), in which none was the predicted events among either late-onset preeclampsia (LOPE) or COVID-19 infection if P2RX7 Z-score was <0.13 (cluster B). Greater proportion of predicted events among LOPE were cluster A (82.85% vs. 70.53%) compared to early-onset preeclampsia (EOPE). The biological relevance by multi-omics information explained the biomarker mechanism, polymicrobial infection in any-onset preeclampsia by ITGA5, viral co-infection in EOPE by ITGA5-IRF6, a shared prediction with COVID-19 infection by ITGA5-IRF6-P2RX7, and non-replicability in datasets with a vitamin D intervention by ITGA5. ConclusionsIn a model that predicts preeclampsia but not COVID-19 infection, the important predictors were maternal-blood genes that were not extremely expressed, including the proposed blood biomarkers. The predictive performance and biological relevance should be validated in future experiments.

4.
BMC Urol ; 22(1): 69, 2022 Apr 24.
Article in English | MEDLINE | ID: mdl-35462546

ABSTRACT

INTRODUCTION: Bladder outlet obstruction (BOO) was caused by a series of histological and biochemical changes in the bladder wall, through the inflammation process in the bladder wall, hypertrophy and fibrosis. ADSC has an important role in bladder regeneration. METHODS AND MATERIALS: This study was an experimental randomized study using male Wistar rats which were monitored at 2 and 4 weeks to determine the effect of ADSC therapy on TGF-ß1 type I collagen, and degree of fibrosis. RESULT: Rats were divided into 5 groups. In the week 2 BOO group, 1 sample included in the category of moderate fibrosis, 1 sample that was given ADSC with mild fibrosis category, 3 samples included in severe fibrosis category, 3 samples that were given ADSC included in the category of moderate fibrosis. The concentration of TGF-ß1 in the hADSC therapy group was significantly lower than the control group at the 2nd and 4th week of monitoring (p2 = 0.048, p4 = 0.048), and also with more type I collagen on 2nd and the 4th week (p2 = 0.048, p4 = 0.048). CONCLUSION: ADSC therapy can reduce the concentration of TGF-ß1, type I collagen, and degree of fibrosis in the male Wistar BOO model.


Subject(s)
Mesenchymal Stem Cell Transplantation , Urinary Bladder Neck Obstruction , Animals , Collagen Type I/analysis , Collagen Type I/metabolism , Disease Models, Animal , Female , Fibrosis/metabolism , Fibrosis/therapy , Humans , Male , Mesenchymal Stem Cells , Rats , Rats, Sprague-Dawley , Rats, Wistar , Stem Cells/pathology , Transforming Growth Factor beta1/analysis , Transforming Growth Factor beta1/metabolism , Urinary Bladder/pathology , Urinary Bladder Neck Obstruction/metabolism , Urinary Bladder Neck Obstruction/pathology , Urinary Bladder Neck Obstruction/therapy
5.
Phys Chem Chem Phys ; 23(12): 7190-7199, 2021 Mar 28.
Article in English | MEDLINE | ID: mdl-33734245

ABSTRACT

Polyaniline (PANI) is a conductive polymer that has been studied intensively due to its high conductivity, ease of synthesis, fascinating doping mechanism, and a broad spectrum of applications. Polyaniline doped HCl was synthesized by a common direct-oxidation method of aniline using ammonium persulfate as the oxidant in HCl solution at various temperatures. This study focused on conductivity alteration of PANI-ES (emeraldine salt) due to the interchain interaction observed at different reaction temperatures from room temperature down to -15 °C. The molecular structure of PANI-ES was determined by FTIR and Raman spectroscopy. At low reaction temperature, the electronic transport properties improve significantly as reflected by its conductivity. X-ray diffraction (XRD) analysis shows that the value d{(110)} and ß play an important role in electron transport through face-to-face and side-to-side interactions, respectively. Scanning electron microscopy (SEM) analysis shows that the morphology of the synthesized PANI-ES consists of granules that are interconnected by nanofibers. Here, the correlation between electronic transport properties, structure, and morphology induced by reaction temperature was analyzed and discussed in detail. Moreover, PANI ES synthesized at 0 °C was applied as an electrocatalytic active layer in the DSSC's counter-electrode with a promising result.

SELECTION OF CITATIONS
SEARCH DETAIL