Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Genom ; 3(3): 100276, 2023 Mar 08.
Article in English | MEDLINE | ID: mdl-36950387

ABSTRACT

In contrast to mono- or biallelic loss of tumor-suppressor function, effects of discrete gene dysregulations, as caused by non-coding (epi)genome alterations, are poorly understood. Here, by perturbing the regulatory genome in mice, we uncover pervasive roles of subtle gene expression variation in cancer evolution. Genome-wide screens characterizing 1,450 tumors revealed that such quasi-insufficiency is extensive across entities and displays diverse context dependencies, such as distinct cell-of-origin associations in T-ALL subtypes. We compile catalogs of non-coding regions linked to quasi-insufficiency, show their enrichment with human cancer risk variants, and provide functional insights by engineering regulatory alterations in mice. As such, kilo-/megabase deletions in a Bcl11b-linked non-coding region triggered aggressive malignancies, with allele-specific tumor spectra reflecting gradual gene dysregulations through modular and cell-type-specific enhancer activities. Our study constitutes a first survey toward a systems-level understanding of quasi-insufficiency in cancer and gives multifaceted insights into tumor evolution and the tissue-specific effects of non-coding mutations.

2.
Diabetes Metab J ; 42(1): 74-81, 2018 Feb.
Article in English | MEDLINE | ID: mdl-29504307

ABSTRACT

BACKGROUND: Metabolic syndrome (MetS) is a complex and multifactorial disorder characterized by insulin resistance, dyslipidaemia, hyperglycemia, abdominal obesity, and elevated blood pressure. The apolipoprotein A5 (APOA5) gene variants have been reported to correlate with two major components of MetS, including low levels of high density lipoprotein cholesterol (HDL-C) and high levels of triglyceride. In the present study, we explored the associations between five single nucleotide polymorphisms (SNPs) of APOA5 gene and the MetS risk. METHODS: In a case-control design, 120 Iranian children and adolescents with/without MetS were genotyped by polymerase chain reaction-sequencing for these SNPs. Then, we investigated the association of SNPs, individually or in haplotype constructs, with MetS risk. RESULTS: The rs34089864 variant and H1 haplotype (harboring the two major alleles of rs619054 and rs34089864) were associated with HDL-C levels. However, there was no significant association between different haplotypes/individual SNPs and MetS risk. CONCLUSION: These results presented no association of APOA5 3'UTR SNPs with MetS. Further studies, including other polymorphisms, are required to investigate the involvement of APOA5 gene in the genetic susceptibility to MetS in the pediatric age group.

3.
Adv Biomed Res ; 6: 24, 2017.
Article in English | MEDLINE | ID: mdl-28401071

ABSTRACT

BACKGROUND: Metabolic syndrome (MetS) is a common disorder which is a constellation of clinical features including abdominal obesity, increased level of serum triglycerides (TGs) and decrease of serum high-density lipoprotein-cholesterol (HDL-C), elevated blood pressure, and glucose intolerance. The apolipoprotein A5 (APOA5) is involved in lipid metabolism, influencing the level of plasma TG and HDL-C. In the present study, we aimed to investigate the associations between four INDEL variants of APOA5 gene and the MetS risk. MATERIALS AND METHODS: In this case-control study, we genotyped 116 Iranian children and adolescents with/without MetS by using Sanger sequencing method for these INDELs. Then, we explored the association of INDELs with MetS risk and their clinical components by logistic regression and one-way analysis of variance analyses. RESULTS: We identified a novel insertion polymorphism, c. *282-283 insAG/c. *282-283 insG variant, which appears among case and control groups. rs72525532 showed a significant difference for TG levels between various genotype groups. In addition, there were significant associations between newly identified single-nucleotide polymorphism (SNP) and rs72525532 with MetS risk. CONCLUSIONS: These results show that rs72525532 and the newly identified SNP may influence the susceptibility of the individuals to MetS.

4.
Tumour Biol ; 37(2): 1763-9, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26314857

ABSTRACT

According to GLOBOCAN 2012, the worldwide burden of cancer increased and is expected to worsen within the next decades. Therefore, universal combat against cancer will not succeed with treatment solely; effective prevention and early detection are urgently needed to tackle the cancer crisis. Emerging data demonstrate that long non-coding RNAs are involved in numerous biological and pathological processes like development and differentiation and in a variety of human diseases including cancer. Located at 18q21, LINC-ROR (regulator of reprogramming) is a modulator of ESCs maintenance and hypoxia-signaling pathways in hepatocellular cancer cells. The aim of this study was to examine the expression of LINC-ROR in various cell lines and representative samples of human cancers by quantitative real-time RT-PCR to provide a snapshot on how LINC-ROR expression may be deregulated in cancer. More than 30 cell lines and 112 patient specimens from various tissues were assessed for relative expression of LINC-ROR. Our results revealed that the expression of LINC-ROR was lower in all somatic cancer cell lines compared to stem cells or cells with stem cell-like capabilities, like the embryonic carcinoma cell line, NTERA-2. In tissues, expression patterns vary, but some cancerous tissues displayed increased LINC-ROR expression compared to corresponding normal tissues. Thus, we hypothesize that LINC-ROR may have a key function in a subpopulation of cells from the tumor bulk, i.e., the cancer stem cells associated with specific properties including resistance to adverse environmental conditions.


Subject(s)
Neoplasms/genetics , RNA, Long Noncoding/genetics , Cell Differentiation/genetics , Cell Line , Cell Line, Tumor , Cellular Reprogramming/genetics , HEK293 Cells , Hep G2 Cells , Human Umbilical Vein Endothelial Cells , Humans , Hypoxia/genetics , MCF-7 Cells , Neoplastic Stem Cells/metabolism , Signal Transduction/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...