Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
BMC Med Genomics ; 17(1): 178, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38965556

ABSTRACT

BACKGROUND: The SLC29A3 gene, which encodes a nucleoside transporter protein, is primarily located in intracellular membranes. The mutations in this gene can give rise to various clinical manifestations, including H syndrome, dysosteosclerosis, Faisalabad histiocytosis, and pigmented hypertrichosis with insulin-dependent diabetes. The aim of this study is to present two Iranian patients with H syndrome and to describe a novel start-loss mutation in SLC29A3 gene. METHODS: In this study, we employed whole-exome sequencing (WES) as a method to identify genetic variations that contribute to the development of H syndrome in a 16-year-old girl and her 8-year-old brother. These siblings were part of an Iranian family with consanguineous parents. To confirmed the pathogenicity of the identified variant, we utilized in-silico tools and cross-referenced various databases to confirm its novelty. Additionally, we conducted a co-segregation study and verified the presence of the variant in the parents of the affected patients through Sanger sequencing. RESULTS: In our study, we identified a novel start-loss mutation (c.2T > A, p.Met1Lys) in the SLC29A3 gene, which was found in both of two patients. Co-segregation analysis using Sanger sequencing confirmed that this variant was inherited from the parents. To evaluate the potential pathogenicity and novelty of this mutation, we consulted various databases. Additionally, we employed bioinformatics tools to predict the three-dimensional structure of the mutant SLC29A3 protein. These analyses were conducted with the aim of providing valuable insights into the functional implications of the identified mutation on the structure and function of the SLC29A3 protein. CONCLUSION: Our study contributes to the expanding body of evidence supporting the association between mutations in the SLC29A3 gene and H syndrome. The molecular analysis of diseases related to SLC29A3 is crucial in understanding the range of variability and raising awareness of H syndrome, with the ultimate goal of facilitating early diagnosis and appropriate treatment. The discovery of this novel biallelic variant in the probands further underscores the significance of utilizing genetic testing approaches, such as WES, as dependable diagnostic tools for individuals with this particular condition.


Subject(s)
Consanguinity , Nucleoside Transport Proteins , Pedigree , Humans , Female , Nucleoside Transport Proteins/genetics , Male , Adolescent , Child , Mutation , Histiocytosis/genetics , Histiocytosis/pathology , Computer Simulation , Hypertrichosis/genetics , Exome Sequencing , Contracture , Hearing Loss, Sensorineural
2.
Mol Biol Rep ; 51(1): 662, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38767670

ABSTRACT

BACKGROUND: Hearing loss (HL) is a common sensory impairment worldwide, with genetic and environmental factors contributing to its occurrence. Next Generation Sequencing (NGS) plays a crucial role in identifying the genetic factors involved in this heterogeneous disorder. METHODS AND RESULTS: In this study, a total of 9 unrelated Iranian families, each having at least one affected individual who tested negative for mutations in GJB2, underwent screening using whole exome sequencing (WES). The pathogenicity and novelty of the identified variant was checked using various databases. Co-segregation study was also performed to confirm the presence of the candidate variants in parents. Plus, The pathogenicity of the detected variant was assessed through in silico analysis using a number of mutation prediction software tools. Among the 9 investigated families, hearing loss-causing genes were identified in 6 families. the mutations were observed in USH2A, CLRN1, BSND, SLC26A4, and MITF, with two of the identified mutations being novel. CONCLUSION: Discovering additional variants and broadening the range of mutations associated with hearing impairment has the potential to enhance the diagnostic effectiveness of molecular testing in patient screening, and can also lead to improved counseling aimed at reducing the risk of affected offspring for high-risk couples.


Subject(s)
Connexin 26 , Exome Sequencing , Hearing Loss , Mutation , Pedigree , Humans , Iran , Exome Sequencing/methods , Male , Female , Hearing Loss/genetics , Mutation/genetics , Connexin 26/genetics , Genetic Predisposition to Disease , Adult , High-Throughput Nucleotide Sequencing/methods , Sulfate Transporters/genetics , Connexins/genetics , Microphthalmia-Associated Transcription Factor/genetics , Child , Genetic Variation/genetics , Extracellular Matrix Proteins/genetics
3.
Mol Biol Rep ; 51(1): 181, 2024 Jan 22.
Article in English | MEDLINE | ID: mdl-38252227

ABSTRACT

BACKGROUND: Primary autosomal recessive microcephaly (MCPH) is a rare developmental disorder characterized by cognitive impairment, delayed neurodevelopment, and reduced brain size. It is a genetically heterogeneous condition, and several genes have been identified as associated with MCPH. METHODS AND RESULTS: In this study, we utilized whole-exome sequencing (WES) to identify disease-causing variations in two brothers from an Iranian family affected by MCPH, who had consanguineous parents. In the patients, we detected a novel homozygous missense mutation (c.806A > G, p.Gln269Arg) in the TEDC1 gene in one of the patients. Co-segregation analysis using Sanger sequencing confirmed that this variant was inherited from parents. The identified variant was evaluated for its pathogenicity and novelty using various databases. Additionally, bioinformatics tools were employed to predict the three-dimensional structure of the mutant TEDC1 protein. CONCLUSIONS: This study presents the second documented report of a mutation in the TEDC1 gene associated with MCPH. The identification of this novel biallelic mutation as a causative factor for MCPH in the proband further underscores the utility of genetic testing techniques, such as WES, as reliable diagnostic tools for individuals with this condition.


Subject(s)
Cognitive Dysfunction , Microcephaly , Male , Humans , Microcephaly/genetics , Iran , Consanguinity , Mutant Proteins , Mutation/genetics
SELECTION OF CITATIONS
SEARCH DETAIL