Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Biofactors ; 48(1): 164-180, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34882869

ABSTRACT

Long noncoding RNAs (lncRNAs) appear as vital regulators and biomarkers in many human cancers. LOC100507144 is a validated lncRNA located in the neighborhood of CD44 in a head-to-head configuration, and its expression and function in cancer cells are still unknown. This research aimed to find out more about the expression and function of this lncRNA in colorectal cancer (CRC). Our expression data represented that the expression of LOC100507144 transcript was substantially higher in tumors with advanced stages, lymph node metastasis, and vascular invasion. Loss-of-function examinations demonstrated that LOC100507144 contributed to CRC cell proliferation by restricting apoptosis, cellular senescence, and promoting cell cycle. Gain-of-function experiments also confirmed these results. Our data illustrated that LOC100507144 enhanced the migration and the epithelial to mesenchymal transition (EMT) of CRC cells, accompanied by the generation of cells with stemness characteristics. Our findings revealed that the knocking-down of LOC100507144 inhibited the expression of crucial stemness factors, including CD44, Nanog, and Sox2, and accordingly resulted in suppressing their targets, miR-302 and miR-21. Overall, the current study's findings for the first time reveal that LOC100507144 could enhance CRC progression and metastasis through regulation of the CD44/Nanog/Sox2/miR-302/miR-21 axis.


Subject(s)
Colorectal Neoplasms , MicroRNAs , RNA, Long Noncoding , Cell Line, Tumor , Cell Movement/genetics , Cell Proliferation/genetics , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , Epithelial-Mesenchymal Transition/genetics , Gene Expression Regulation, Neoplastic , Humans , Hyaluronan Receptors/genetics , Hyaluronan Receptors/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Nanog Homeobox Protein/genetics , Nanog Homeobox Protein/metabolism , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , SOXB1 Transcription Factors/genetics , SOXB1 Transcription Factors/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL