Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
Add more filters










Publication year range
2.
Gut Pathog ; 16(1): 9, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38378690

ABSTRACT

BACKGROUND: Colorectal cancer (CRC) poses a significant healthcare challenge, accounting for nearly 6.1% of global cancer cases. Early detection, facilitated by population screening utilizing innovative biomarkers, is pivotal for mitigating CRC incidence. This study aims to scrutinize the fecal and salivary microbiomes of CRC-positive individuals (CPs) in comparison to CRC-negative counterparts (CNs) to enhance early CRC diagnosis through microbial biomarkers. MATERIAL AND METHODS: A total of 80 oral and stool samples were collected from Taleghani Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran, encompassing both CPs and CNs undergoing screening. Microbial profiling was conducted using 16S rRNA sequencing assays, employing the Nextera XT Index Kit on an Illumina NovaSeq platform. RESULTS: Distinct microbial profiles were observed in saliva and stool samples of CPs, diverging significantly from those of CNs at various taxonomic levels, including phylum, family, and species. Saliva samples from CPs exhibited abundance of Calothrix parietina, Granulicatella adiacens, Rothia dentocariosa, and Rothia mucilaginosa, absent in CNs. Additionally, Lachnospiraceae and Prevotellaceae were markedly higher in CPs' feces, while the Fusobacteria phylum was significantly elevated in CPs' saliva. Conversely, the non-pathogenic bacterium Akkermansia muciniphila exhibited a significant decrease in CPs' fecal samples compared to CNs. CONCLUSION: Through meticulous selection of saliva and stool microbes based on Mean Decrease GINI values and employing logistic regression for saliva and support vector machine models for stool, we successfully developed a microbiota test with heightened sensitivity and specificity for early CRC detection.

3.
Article in English | MEDLINE | ID: mdl-37566155

ABSTRACT

BACKGROUND: Colorectal cancer (CRC) screening and detecting it at an early stage is an effective way to decrease mortality from CRC. Colonoscopy, considered the gold standard (GS) for diagnosing the disease in many countries, has several limitations. Therefore, the main focus of this literature is to investigate the ability of combining candidate gut microbiota for early diagnosis of CRC, both in the presence and absence of GS test outcomes. METHODS: We analyzed the data derived from a case-control study, including 83 screening colonoscopies conducted on subjects aged 18-92 years in Tehran, Iran. The candidate gut microbiota including, ETBF, Enterococcus faecalis, and Porphyromonas gingivalis were quantified in samples using absolute qRT PCR. The Bayesian latent class model (LCM) was employed to combine the values from the multiple bacterial markers in order to optimize the discriminatory ability compared with a single marker. RESULTS: Based on Bayesian logistic regression, we discovered that family history of CRC, physical activity, cigarette smoking, and food diet were all significantly associated with an increased risk of CRC. When comparing ETBF and E. faecalis to P. gingivalis, we have observed that P. gingivalis exhibited greater predictive power in detecting high-risk individuals with CRC. As such, the sensitivity, specificity, and the area under the receiver-operating characteristics curve of combining ETBF, E. faecalis, and P. gingivalis were 98%, 96%, and 0.97, respectively. CONCLUSIONS: This study suggests that the combined use of the three markers markedly improves classification performance compared to pairwise combinations, as well as individual markers, both with and without GS test outcomes. Noticeably, the triple composition of the fecal markers may serve as a reliable non-invasive indicator for the early prediction of CRC.

4.
BMC Gastroenterol ; 22(1): 514, 2022 Dec 12.
Article in English | MEDLINE | ID: mdl-36510191

ABSTRACT

BACKGROUND: Colorectal cancer (CRC) has been regarded as one of the most frequently diagnosed malignancies among the leading causes of cancer-related morbidity and mortality globally. Diagnosis of CRC at the early-stages of tumour might improve the survival rate of patients. The current study sought to determine the performance of fecal Fusobacterium nucleatum (F. nucleatum) and Streptococcus bovis (S. bovis) for timely predicting CRC. METHODS: Through a case-control study, the fecal sample information of 83 individuals (38 females, 45 males) referring to a hospital in Tehran, Iran was used. All patients underwent a complete colonoscopy, regarded as a gold standard test. Bacterial species including S. bovis and F. nucleatum were measured by absolute quantitative real-time PCR. The Bayesian univariate and bivariate latent class models (LCMs) were applied to estimate the ability of the candidate bacterial markers in order to early detection of patients with CRC. RESULTS: Bayesian univariate LCMs demonstrated that the sensitivities of S. bovis and F. nucleatum were estimated to be 86% [95% credible interval (CrI) 0.82-0.91] and 82% (95% CrI 0.75-0.88); while specificities were 84% (95% CrI 0.78-0.89) and 80% (95% CrI 0.73-0.87), respectively. Moreover, the area under the receiver operating characteristic curves (AUCs) were 0.88 (95% CrI 0.83-0.94) and 0.80 (95% CrI 0.73-0.85) respectively for S. bovis and F. nucleatum. Based on the Bayesian bivariate LCMs, the sensitivities of S. bovis and F. nucleatum were calculated as 93% (95% CrI 0.84-0.98) and 90% (95% CrI 0.85-0.97), the specificities were 88% (95% CrI 0.78-0.93) and 87% (95% CrI 0.79-0.94); and the AUCs were 0.91 (95% CrI 0.83-0.99) and 0.88(95% CrI 0.81-0.96), respectively. CONCLUSIONS: Our data has identified that according to the Bayesian bivariate LCM, S. bovis and F. nucleatum had a more significant predictive accuracy compared with the univariate model. In summary, these intestinal bacteria have been highlighted as novel tools for early-stage CRC diagnosis.


Subject(s)
Colorectal Neoplasms , Male , Female , Humans , Colorectal Neoplasms/pathology , Case-Control Studies , Bayes Theorem , Iran , Fusobacterium nucleatum , Bacteria
5.
Gastroenterol Hepatol Bed Bench ; 15(3): 263-270, 2022.
Article in English | MEDLINE | ID: mdl-36311958

ABSTRACT

Aim: The current study aimed to remove aflatoxin from reconstituted milk by adding three probiotics, namely Saccharomyces boulardii, Lactobacillus casei, and Lactobacillus acidophilus. Background: Aflatoxins are poisonous substances produced by certain kinds of fungi that are found naturally all over the world. They can contaminate food crops and pose a serious health threat to humans and livestock. Microbial detoxification is one method of eliminating aflatoxins, including aflatoxin M1. Methods: For this purpose, about 109 and 107 cfu/ml of S. boulardii, L. casei, and L. acidophilus were inoculated into skim milk without aflatoxin M1. The samples were then spiked by aflatoxin M1 in concentrations of 0.5 and 0.75 ng/ml. The concentration of the aflatoxin residing in supernatant of milk samples after different storage times (30 and 90 minutes) and temperatures of 4 ℃ and 37 °C was measured by ELISA method, and the results were confirmed by HPLC. Results: The results showed that the highest amount of aflatoxin M1 removal was related to S. boulardii (96.88 ± 3.79c) with a microbial density concentration of 109 cfu/ml and toxin concentration of 0.75 ng/ml at 37 °C for 90 minutes and then to L. acidophilus (71.46 ± 3.79b) with a microbial density concentration of 107 cfu/ml and toxin concentration 0.75 ng/ml at 4 °C for 90 minutes. Furthermore, the maximum level of AFM1 binding to 107 cfu/ml of L. casei with average binding percentages of 64.31 ± 3/79c was 0.75 ng/ml at 37 °C for 90 minutes. Conclusion: The results revealed the possibility of using S. boulardii in combination with the selected probiotics of L. casei and L. acidophilus in the detoxification of AFM1-contaminated milk.

6.
Avicenna J Med Biotechnol ; 14(3): 188-195, 2022.
Article in English | MEDLINE | ID: mdl-36061133

ABSTRACT

Background: Toll-Like Receptors (TLRs) are the critical mediators of inflammatory routs in the gut, which play an essential role in regulating the immune responses towards various ligands derived from pathogenic bacteria. Also, TLR signaling has been implicated in the development of Inflammatory Bowel Disease (IBD), Adenomatous Polyp (AP), and Colorectal Cancer (CRC). Here, we aimed to examine the expression of some TLRs concerning certain fecal bacteria in AP and CRC patients with and without IBD. Methods: This case-control study collected fecal and colonic tissue samples from 93 patients versus Normal Controls (NC) via colonoscopy. Fecal samples were used for DNA extraction, and the abundance of selected fecal bacteria was determined by absolute real-time PCR. Also, the gene expression of TLR2, 4, and 5 was analyzed using RT-PCR on the colonic tissues of participants. Results: Compared to NC individuals, in AP and CRC patients, the mRNA expressions of TLR4 and TLR2 were significantly increased while TLR5 was decreased. A meaningful association between TLRs mRNA expression levels and the abundance of some selected fecal bacteria was detected. Also, there was a significant relationship between participant's food regimes, smoking habit and intestinal TLRs expression. Conclusion: Our study proposed the important role of TLRs during adenomatous and CRC formation. Alterations in TLRs expression associated with certain gut bacteria may contribute to disease development.

7.
Biomolecules ; 12(5)2022 04 29.
Article in English | MEDLINE | ID: mdl-35625579

ABSTRACT

Pancreatic cancer (PC) is an aggressive malignancy with a dismal prognosis. To improve patient survival, the development of screening methods for early diagnosis is pivotal. Oncogenomic alterations present in tumor tissue are a suitable target for non-invasive screening efforts, as they can be detected in tumor-derived cells, cell-free nucleic acids, and extracellular vesicles, which are present in several body fluids. Since stool is an easily accessible source, which enables convenient and cost-effective sampling, it could be utilized for the screening of these traces. Herein, we explore the various oncogenomic changes that have been detected in PC tissue, such as chromosomal aberrations, mutations in driver genes, epigenetic alterations, and differentially expressed non-coding RNA. In addition, we briefly look into the role of altered gut microbiota in PC and their possible associations with oncogenomic changes. We also review the findings of genomic alterations in stool of PC patients, and the potentials and challenges of their future use for the development of stool screening tools, including the possible combination of genomic and microbiota markers.


Subject(s)
Gastrointestinal Microbiome , Pancreatic Neoplasms , Feces , Humans , Mass Screening , Pancreatic Neoplasms/diagnosis , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms
8.
Curr Microbiol ; 79(5): 129, 2022 Mar 14.
Article in English | MEDLINE | ID: mdl-35286507

ABSTRACT

The pathogenesis of celiac disease (CD) is significantly influenced by gut microbiota. Daily nutritional profile influences the diversity of gut microbiota. This study was aimed to compare the abundance of gut microbiota in CD patients compared to normal control (NC), and to investigate the impact of nutritional factors on their fecal microbiota diversity. In this study, a selected panel of intestinal bacteria was assessed in 31 confirmed CD patients adhering to gluten-free diet (GFD) for more than 6 months and in 20 NC subjects. Stool samples were collected from each participant, DNA was extracted, and absolute quantitative real-time PCR (qPCR) was carried out. The gut microbiota including Bacteroidetes, Bifidobacterium, Clostridium, Staphylococcus, Enterobacteiaceae, Firmicutes, and Lactobacillus were assessed. The quantities of fruits, vegetables, meat, liquids, sugar and gluten-free candy/bread consumption were evaluated using a questionnaire. The proportion of Bifidobacterium, Firmicutes, and Lactobacillus in CD cases was significantly lower than NC (P < 0.005). Significant correlation coefficients between Bifidobacterium and Lactobacillus (P < 0.001), and also Firmicutes and Lactobacillus (P < 0.001) were recorded. Moreover, a significant association between medium amount of meat and bean consumptions and low abundance of Lactobacillus and Firmicutes (P = 0.024 and P = 0.027, respectively), and also high amount of bean consumptions and low abundance of Lactobacillus (P = 0.027) in CD were observed. The results showed that meat and bean consumptions could reduce the beneficial bacteria including Firmicutes and Lactobacillus in CD patients. Therefore, changes in the gut microbiota abundance may contribute to dietary changes and unimproved CD symptoms.


Subject(s)
Celiac Disease , Gastrointestinal Microbiome , Microbiota , Bifidobacterium/genetics , Feces/microbiology , Humans
9.
Cancers (Basel) ; 15(1)2022 Dec 28.
Article in English | MEDLINE | ID: mdl-36612188

ABSTRACT

Alterations of the gut microbiome in cases of colorectal cancer (CRC) hint at the involvement of host-microbe interactions in the onset and progression of CRC and also, possibly, provide novel ways to detect and prevent CRC early. The aim of the present study was to evaluate whether the oral and fecal microbiomes of an individual can be suitable for CRC screening. Oral and fecal samples (n = 80) were gathered in Taleghani hospital, affiliated with Shahid Beheshti University of Medical Sciences, Tehran-Iran, from CRC stage 0 and I patients and healthy controls (HCs), who were screened for the first time. Microbial metagenomics assays were performed for studying microbiota profiles in all oral and fecal samples gathered. An abundance of top bacterial genera from both types of specimens (fecal and saliva samples) revealed a distinction between CRC patients and HCs. In saliva samples, the α diversity index was different between the microbiome of HCs and CRC patients, while ß diversity showed a densely clustered microbiome in the HCs but a more dispersed pattern in CRC cases. The α and ß diversity of fecal microbiota between HCs and CRC patients showed no statistically significant differences. Bifidobacterium was identified as a potential bacterial biomarker in CRC saliva samples, while Fusobacterium, Dialister, Catonella, Tennerella, Eubacterium-brachy-group, and Fretibacterium were ideal to distinguish HCs from CRC patients. One of the reasons for the heterogeneity of CRC may be the gastrointestinal (GI) tract microbiota, which can also cause systematic resistance to CRC. Moreover, an evaluation of saliva microbiota might offer a suitable screening test for the early detection of this malignancy, providing more accurate results than its fecal counterpart.

10.
Front Microbiol ; 12: 785856, 2021.
Article in English | MEDLINE | ID: mdl-34917064

ABSTRACT

Extracellular vesicles (EVs), as nano-/micro-scale vehicles, are membranous particles containing various cargoes including peptides, proteins, different types of RNAs and other nucleic acids, and lipids. These vesicles are produced by all cell types, in which stem cells are a potent source for them. Stem cell-derived EVs could be promising platforms for treatment of infectious diseases and early diagnosis. Infectious diseases are responsible for more than 11 million deaths annually. Highly transmissible nature of some microbes, such as newly emerged severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), drives researcher's interest to set up different strategies to develop novel therapeutic strategies. Recently, EVs-based diagnostic and therapeutic approaches have been launched and gaining momentum very fast. The efficiency of stem cell-derived EVs on treatment of clinical complications of different viruses and bacteria, such as SARS-CoV-2, hepatitis B virus (HBV), hepatitis C virus (HCV), human immunodeficiency virus (HIV), Staphylococcus aureus, Escherichia coli has been demonstrated. On the other hand, microbial pathogens are able to incorporate their components into their EVs. The microbe-derived EVs have different physiological and pathological impacts on the other organisms. In this review, we briefly discussed biogenesis and the fate of EVs. Then, EV-based therapy was described and recent developments in understanding the potential application of stem cell-derived EVs on pathogenic microorganisms were recapitulated. Furthermore, the mechanisms by which EVs were exploited to fight against infectious diseases were highlighted. Finally, the deriver challenges in translation of stem cell-derived EVs into the clinical arena were explored.

11.
Int J Mol Sci ; 22(23)2021 Nov 30.
Article in English | MEDLINE | ID: mdl-34884776

ABSTRACT

Pancreatic cancer (PC) is an aggressive disease with a high mortality and poor prognosis. The human microbiome is a key factor in many malignancies, having the ability to alter host metabolism and immune responses and participate in tumorigenesis. Gut microbes have an influence on physiological functions of the healthy pancreas and are themselves controlled by pancreatic secretions. An altered oral microbiota may colonize the pancreas and cause local inflammation by the action of its metabolites, which may lead to carcinogenesis. The mechanisms behind dysbiosis and PC development are not completely clear. Herein, we review the complex interactions between PC tumorigenesis and the microbiota, and especially the question, whether and how an altered microbiota induces oncogenomic changes, or vice versa, whether cancer mutations have an impact on microbiota composition. In addition, the role of the microbiota in drug efficacy in PC chemo- and immunotherapies is discussed. Possible future scenarios are the intentional manipulation of the gut microbiota in combination with therapy or the utilization of microbial profiles for the noninvasive screening and monitoring of PC.


Subject(s)
Carcinoma, Pancreatic Ductal/microbiology , Dysbiosis/microbiology , Gastrointestinal Microbiome/physiology , Pancreas/microbiology , Pancreatic Neoplasms/microbiology , Carcinoma, Pancreatic Ductal/pathology , Carcinoma, Pancreatic Ductal/therapy , Cell Transformation, Neoplastic/pathology , Humans , Mouth/microbiology , Pancreas/pathology , Pancreatic Neoplasms/pathology , Pancreatic Neoplasms/therapy
12.
J Clin Lab Anal ; 35(2): e23601, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33094859

ABSTRACT

BACKGROUND: The feces of colorectal cancer (CRC) patients contain tumor colonocytes, which constantly shed into the lumen area. Therefore, stool evaluation can be considered as a rapid and low-risk way to directly determine the colon and rectum status. As long non-coding RNAs (lncRNAs) alterations are important in cancer cells fate regulation, we aimed to assess the level of a panel of cancer-related lncRNAs in fecal colonocytes. METHODS: The population study consisted of 150 subjects, including a training set, a validation set, and a group of 30 colon polyps. The expression levels of lncRNAs were evaluated by quantitative real-time PCR (qRT-PCR). The NPInetr and EnrichR tools were used to identify the interactions and functions of lncRNAs. RESULTS: A total of 10 significantly dysregulated lncRNAs, including CCAT1, CCAT2, H19, HOTAIR, HULC, MALAT1, PCAT1, MEG3, PTENP1, and TUSC7, were chosen for designing a predictive panel. The diagnostic performance of the panel in distinguishing CRCs from the healthy group was AUC: 0.8554 in the training set and 0.8465 in the validation set. The AUC for early CRCs (I-II TNM stages) was 0.8554 in the training set and 0.8465 in the validation set, and for advanced CRCs (III-IV TNM stages) were 0.9281 in the training set and 0.9236 in the validation set. The corresponding AUC for CRCs vs polyps were 0.9228 (I-IV TNM stages), 0.9042 (I-II TNM stages), and 0.9362 (III-IV TNM stages). CONCLUSIONS: These data represented the application of analysis of fecal colonocytes lncRNAs in early detection of CRC.


Subject(s)
Biomarkers, Tumor/genetics , Colorectal Neoplasms/genetics , RNA, Long Noncoding/analysis , Adult , Colonic Polyps/genetics , Colorectal Neoplasms/diagnosis , Early Detection of Cancer , Feces , Female , Gene Expression Regulation, Neoplastic , Humans , Male , Middle Aged , RNA, Long Noncoding/genetics , RNA, Long Noncoding/isolation & purification , Reproducibility of Results
13.
Cancer Med ; 10(3): 1141-1154, 2021 02.
Article in English | MEDLINE | ID: mdl-33369247

ABSTRACT

The human gastrointestinal (GI) tract harbors gut microbiome, which plays a crucial role in preserving homeostasis at the intestinal host-microbial interface. Conversely, specific gut microbiota may be altered during various pathological conditions and produce a number of toxic compounds and oncoproteins, in turn, to induce both inflammatory response and carcinogenesis. Recently, promising findings have been documented toward the implementation of certain intestinal microbiome in the next era of cancer biology and cancer immunotherapy. Notably, intestinal microbiota can cooperate with immune checkpoint inhibitors (ICIs) of its host, especially in enhancing the efficacy of programmed death 1 (PD-1) protein and its ligand programmed death ligand 1 (PD-L1) blockade therapy for cancer. Herein, we review the dual function of gut microbiota in triggering GI cancers, its association with host immunity and its beneficial functions in modulation of cancer immunotherapy responses. Furthermore, we consider the significance of gut microbiota as a potential biomarker for predicting the efficacy of cancer immunotherapy. Finally, we summarize the relevant limitations that affect the effectiveness and clinical applications of gut microbiome in response to immunotherapy.


Subject(s)
Gastrointestinal Microbiome/immunology , Immune Checkpoint Inhibitors/therapeutic use , Immunotherapy/methods , Neoplasms/drug therapy , Animals , Homeostasis , Humans , Neoplasms/immunology , Neoplasms/microbiology
14.
Int J Mol Sci ; 21(23)2020 Nov 26.
Article in English | MEDLINE | ID: mdl-33255933

ABSTRACT

Abnormal activation of Toll-like receptor (TLRs) signaling can result in colon cancer development. The aim of this study was to investigate the expression of important TLRs in different histological types of colorectal polyps and evaluate their relationship with intestinal microbiota. The expression levels of TLR2, 3, 4, and 5 were analyzed in intestinal biopsy specimens of 21 hyperplastic polyp (HP), 16 sessile serrated adenoma (SSA), 29 tubular adenoma (TA), 21 villous/tubulovillous (VP/TVP) cases, and 31 normal controls. In addition, selected gut bacteria including Streptococcus bovis, Enterococcus faecalis, Enterotoxigenic Bacteroides fragilis (ETBF), Fusobacterium nucleatum, Porphyromonas spp., Lactobacillus spp., Roseburia spp., and Bifidobacterium spp. were quantified in fecal samples using absolute qRT PCR, and, finally, the association between TLRs and these gut microbiota- was evaluated by Spearman's correlation coefficient. Higher expression of TLR2 and TLR4 in VP/TVP and TA, and lower expression levels of TLR3 and TLR5 in all type of polyps were observed. The differences in TLR expression patterns was not only dependent on the histology, location, size, and dysplasia grade of polyps but also related to the intestinal microbiota patterns. TLR2 and TLR4 expression was directly associated with the F. nucleatum, E. faecalis, S. bovis, Porphyromonas, and inversely to Bifidobacterium, Lactobacillus, and Roseburia quantity. Furthermore, TLR3 and TLR5 expression was directly associated with Bifidobacterium, Roseburia, and Lactobacillus quantity. Our results suggest a possible critical role of TLRs during colorectal polyp progression. An abnormal regulation of TLRs in relation to gut microbial quantity may contribute to carcinogenesis.


Subject(s)
Colonic Polyps/metabolism , Colonic Polyps/microbiology , Gastrointestinal Microbiome , Toll-Like Receptors/metabolism , Adenoma/genetics , Adenoma/pathology , Biodiversity , Case-Control Studies , Colonic Polyps/genetics , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , Female , Gene Expression Regulation, Neoplastic , Humans , Hyperplasia/metabolism , Male , Middle Aged , RNA, Messenger/genetics , RNA, Messenger/metabolism , Toll-Like Receptors/genetics
15.
Cancer Inform ; 19: 1176935120972383, 2020.
Article in English | MEDLINE | ID: mdl-33239858

ABSTRACT

Aberrant activation of the WNT/CTNNB1 pathway is notorious in colorectal cancer (CRC). Here, we demonstrate that the expression of specific and crucial WNT signaling pathway genes is linked to disease progression in colonic adenomatous (AP) and hyperplastic (HP) polyps in an Iranian patient population. Thus, we highlight potential gene expression profiles as candidate novel biomarkers for the early detection of CRC. From a 12-month study (2016-2017), 44 biopsy samples were collected during colonoscopy from the patients with colorectal polyps and 10 healthy subjects for normalization. Clinical and demographic data were collected in all cases, and mRNA expression of APC, CTNNB1, CDH1, AXIN1, and AXIN2 genes was investigated using real-time polymerase chain reaction (PCR). CTNNB1 and CDH1 expression levels were unaltered in AP and HP subjects, whereas mRNA expression of APC was decreased in AP contrasted with HP subjects, with a significant association between APC downregulation and polyp size. Although AXIN1 showed no changes between AP and HP groups, a significant association between AXIN1 and dysplasia grade was found. Also, significant upregulation of AXIN2 in both AP and HP subjects was detected. In summary, we have shown increased expression of AXIN2 and decreased expression of APC correlating with grade of dysplasia and polyp size. Hence, AXIN2 and APC should be explored as biomarker candidates for early detection of AP and HP polyps in CRC.

16.
Front Med (Lausanne) ; 7: 398, 2020.
Article in English | MEDLINE | ID: mdl-32754608

ABSTRACT

The human pathogenic coronaviruses cause infections of the respiratory tract from mild to severe ranges. Mild cases may look like the common cold, while cases with severe disease may represent severe acute respiratory syndrome (SARS), Middle East respiratory syndrome (MERS) and coronavirus disease 2019 (COVID-19). Currently, COVID-19 is a rapidly emerging infection and the number of COVID-19 cases and its associated deaths are quickly growing around the world. COVID-19 infection can involve multiple body organs other than respiratory tract and lungs such as liver. It is hypothesized that COVID-19-associated liver injury can hamper the host drug metabolism and excretion. Liver involvement present with the elevation of enzymatic levels of alanine transaminase (ALT), aspartate transaminase (AST), alkaline phosphatase (ALP), and gamma-glutamyl transferase (GGT) accompanied by enhanced total bilirubin and decreased albumin levels has been reported in COVID-19 cases. One of the major concerns during COVID-19 outbreak is the population with a history of pre-existing liver disorders including viral hepatitis, alcoholic liver disease (ALD), non-alcoholic fatty liver disease (NAFLD), autoimmune hepatitis, hepatic compensated, and decompensated cirrhosis. Herein, we discussed the probable correlation between COVID-19 infection and liver damages, particularly chronic and pre-existing liver diseases during COVID-19 outbreak. Furthermore, we explained about the liver transplant recipients and post-transplant drugs used in patients with COVID-19 infection. Finally, we discussed about the therapeutic medications administered in COVID-19 patients with underlying liver injuries and their significant considerations.

17.
Middle East J Dig Dis ; 12(1): 5-11, 2020 Jan.
Article in English | MEDLINE | ID: mdl-32082515

ABSTRACT

Gut microbiota is considered as a human organ with its own specific functions and complexity. Development of novel techniques such as shut gun sequencing, metagenomics, and next-generation sequencing (NGS) has enabled bypassing the traditional culturedependent bias and has significantly expanded our understanding of the composition, diversity, and roles of the gut microbiota in human health and diseases. Although amplicon sequencing characterizes the taxonomic composition of the gut microbiome, it is impossible to cover the direct evidence of the microbial biological functions related to the gut microbial community. Hence, the critical next step for gut microbiome studies is shifting from gene/ genome-centric analysis to mechanism-centric techniques by integrating omics data with experimental results. Realizing gut microbial diversity and their bioactive metabolites function will provide insight into the clinical application of gut microbiota in diagnoses and treatments of several diseases. In this review, we focused on explaining the conventional and advanced microbiome analysis techniques regarding gut microbiota investigation with considering the advantages and disadvantages of the platforms.

18.
Front Microbiol ; 11: 590683, 2020.
Article in English | MEDLINE | ID: mdl-33384670

ABSTRACT

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a new coronavirus that was recently discovered in 2019. While the world is working hard to overcome and control the coronavirus disease 2019 (COVID-19) pandemic, it is also crucial to be prepared for the great impacts of this outbreak on the development of antimicrobial resistance (AMR). It is predicted that inappropriate and too much use of antibiotics, biocides, and disinfectants during this pandemic may raise disastrous effects on antibiotic stewardship programs and AMR control all around the world. Furthermore, the use of certain antibiotics alone or in combination with antiviral agents or other medications for the treatment of secondary bacterial infections among COVID-19 patients may be regarded as a major factor that negatively affects host immune response by disrupting mitochondrial function and activity. Herein, we suggest that the current management strategies to control AMR and prioritize antibiotic stewardship schemes should be extremely highlighted in relation to the COVID-19 outbreak. The rising concerns about excessive use of antimicrobials and biocides and taking too much hygiene also need to be addressed during this pandemic due to their impacts on AMR, public health, and the environment.

19.
Future Microbiol ; 15: 1747-1758, 2020 12.
Article in English | MEDLINE | ID: mdl-33404263

ABSTRACT

COVID-19 caused by SARS-CoV-2, is an international concern. This infection requires urgent efforts to develop new antiviral compounds. To date, no specific drug in controlling this disease has been identified. Developing the new treatment is usually time consuming, therefore using the repurposing broad-spectrum antiviral drugs could be an effective strategy to respond immediately. In this review, a number of broad-spectrum antivirals with potential efficacy to inhibit the virus replication via targeting the virus spike protein (S protein), RNA-dependent RNA polymerase (RdRp), 3-chymotrypsin-like protease (3CLpro) and papain-like protease (PLpro) that are critical in the pathogenesis and life cycle of coronavirus, have been evaluated as possible treatment options against SARS-CoV-2 in COVID-19 patients.


Subject(s)
Antiviral Agents/therapeutic use , COVID-19 Drug Treatment , SARS-CoV-2/drug effects , Virus Replication/drug effects , Chymases/drug effects , Coronavirus Papain-Like Proteases/drug effects , Coronavirus RNA-Dependent RNA Polymerase/drug effects , Drug Repositioning , Humans , Virus Internalization/drug effects
20.
Asian Pac J Cancer Prev ; 20(8): 2299-2302, 2019 08 01.
Article in English | MEDLINE | ID: mdl-31450898

ABSTRACT

Toll-like receptor 9 (TLR9) is a cellular DNA receptor of the innate immune system which plays a pivotal role in inflammatory response. Recently, changing expression levels of TLR9 has been observed in a wide range of cancer cells; however, there is little information about colorectal polyps. Herein, we assessed the mRNA expression of TLR9 in different colorectal polyp types compared to normal group in order to investigate its expression level during CRC initiation. Fifty-four biopsy samples from colorectal polyp patients and from 20 healthy subjects were collected. The mucosal mRNA expression level of TLR9 gene was identified by real time PCR. Fold change of gene expression was evaluated by 2-ΔΔct method. There was a significant relationship between the lower expression of TLR9 gene in the polyp cases compared to normal individuals (P value = 0.0005), Also, decreased TLR9 mRNA expression was obtained in adenomas in contrast to hyperplastic and normal groups (P value = 0.0008). Based on the current results, we hypothesized that aberrant surface expression of TLR9 on tumor cells may promote the growth and invasion of colorectal polyps. Further, TLR9 modulation may have an important impact on the development of novel therapeutic strategies.


Subject(s)
Adenocarcinoma/pathology , Biomarkers, Tumor/genetics , Colonic Polyps/pathology , Colorectal Neoplasms/pathology , Hyperplasia/pathology , RNA, Messenger/genetics , Toll-Like Receptor 9/genetics , Adenocarcinoma/genetics , Adenocarcinoma/metabolism , Biomarkers, Tumor/metabolism , Case-Control Studies , Colonic Polyps/genetics , Colonic Polyps/metabolism , Colorectal Neoplasms/genetics , Colorectal Neoplasms/metabolism , Female , Follow-Up Studies , Humans , Hyperplasia/genetics , Hyperplasia/metabolism , Male , Neoplasm Staging , RNA, Messenger/metabolism , Toll-Like Receptor 9/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...