Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Curr Microbiol ; 81(9): 295, 2024 Aug 03.
Article in English | MEDLINE | ID: mdl-39096343

ABSTRACT

Staphylococcus aureus (S. aureus) is considered as one of the challenging ulcer infections in diabetic patients especially those who have acquired antibiotic-resistant infections. Nanotechnology products have enormous potential to treat diseases including infectious diseases. As chitosan and zinc oxide (ZnO) nanoparticles (NPs) have harbored a high antimicrobial effect, this survey was aimed to synthesize chitosan, ZnO, and ZnO-Urtica. diocia (ZnO-U. diocia) NPs, and to assess their antimicrobial effects and their influence on virulence genes expression in S. aureus isolates from diabetic ulcers. The antibacterial effect of NPs was detected by microdilution method. The most frequently components in U. diocia aqueous extract were linalool,4-thujanol, camphor, carvacrol, propanedioic acid, and di(butyl) phthalate. More than 95% of clinical S. aureus isolates were resistant to several antibiotics including erythromycin, cefoxitin, clindamycin, and ciprofloxacin. The most resistant isolates were S. aureus ATDS 52, ATDS 53, F5232, and F91. The lowest MIC and MBC by the NPs on the isolates was detected as 0.128 g/mL and 0.178 g/mL, respectively. A significant decrease of 90% in the expression rates of lukED and RNAIII genes was reported for S. aureus isolates treated with the NPs. The synthetized ZnO-U. diocia and chitosan NPs can be proposed as a reliable and effective antimicrobial agent targeting diabetic ulcers infections caused by S. aureus because of its high effects on the bacterial growth and virulence genes expression.


Subject(s)
Anti-Bacterial Agents , Chitosan , Microbial Sensitivity Tests , Staphylococcus aureus , Urtica dioica , Zinc Oxide , Chitosan/pharmacology , Zinc Oxide/pharmacology , Zinc Oxide/chemistry , Staphylococcus aureus/drug effects , Staphylococcus aureus/genetics , Anti-Bacterial Agents/pharmacology , Humans , Urtica dioica/chemistry , Staphylococcal Infections/microbiology , Staphylococcal Infections/drug therapy , Nanoparticles/chemistry , Plant Extracts/pharmacology , Plant Extracts/chemistry , Diabetic Foot/microbiology , Diabetes Complications/microbiology
2.
Iran J Biotechnol ; 22(1): e3687, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38827342

ABSTRACT

Background: Soil salinity is a major problem in the world that affects the growth and yield of plants. Application of new and up-to-date techniques can help plants in dealing with salinity stress. One of the approaches for reducing environmental stress is the use of rhizosphere bacteria. Objective: The aim of present study was to investigate the effect of the inoculation of Bacillus cereus on physiological and biochemical indicators and the expression of some key genes involved in the Artemisinin biosynthesis pathway in Artemisia absinthium under salinity stress. Materials and Methods: The study was conducted using three different salinity levels (0, 75, 150 mM/NaCl) and two different bacterial treatments (i. e, without bacterial inoculation and co-inoculation with B. cereus isolates). The data from the experiments were analyzed using factorial analysis, and the resulting interaction effects were subsequently examined and discussed. Results: The results showed that with increasing salinity, root and stem length, root and stem weight, root and stem dry weight, and potassium content were decreased, although the content of sodium was increased. Rhizosphere bacteria increased the contents of Artemisinin, potassium, calcium, magnesium, and iron and the expression of Amorpha-4,11-diene synthase and Cytochrome P450 monooxygenase1 genes as well as the growth indicators; although decreased the sodium content. The highest ADS expression was related to co-inoculation with B. cereus isolates E and B in 150 mM salinity. The highest CYP71AV1 expression was related to co-inoculation with B. cereus isolates E and B in 150 mM salinity. Conclusion: These findings showed that the increase in growth indices under salinity stress was probably due to the improvement of nutrient absorption conditions as a result of ion homeostasis, sodium ion reduction and Artemisinin production conditions by rhizosphere B. cereus isolates E and B.

SELECTION OF CITATIONS
SEARCH DETAIL