Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
Add more filters











Publication year range
1.
Nat Commun ; 15(1): 7832, 2024 Sep 07.
Article in English | MEDLINE | ID: mdl-39244569

ABSTRACT

Despite the increasing burden of dengue, the regional emergence of the virus in Kenya has not been examined. This study investigates the genetic structure and regional spread of dengue virus-2 in Kenya. Viral RNA from acutely ill patients in Kenya was enriched and sequenced. Six new dengue-2 genomes were combined with 349 publicly available genomes and phylogenies used to infer gene flow between Kenya and other countries. Analyses indicate two dengue-2 Cosmopolitan genotype lineages circulating in Kenya, linked to recent outbreaks in coastal Kenya and Burkina Faso. Lineages circulating in Western, Southern, and Eastern Africa exhibiting similar evolutionary features are also reported. Phylogeography suggests importation of dengue-2 into Kenya from East and Southeast Asia and bidirectional geneflow. Additional lineages circulating in Africa are also imported from East and Southeast Asia. These findings underscore how intermittent importations from East and Southeast Asia drive dengue-2 circulation in Kenya and Africa more broadly.


Subject(s)
Dengue Virus , Dengue , Evolution, Molecular , Genome, Viral , Molecular Epidemiology , Phylogeny , Phylogeography , RNA, Viral , Dengue Virus/genetics , Dengue Virus/classification , Dengue/epidemiology , Dengue/virology , Humans , Kenya/epidemiology , Africa, Eastern/epidemiology , RNA, Viral/genetics , Genome, Viral/genetics , Genotype , Gene Flow , Disease Outbreaks
3.
Open Forum Infect Dis ; 11(6): ofae312, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38933737

ABSTRACT

We enrolled 21 patients with laboratory-confirmed yellow fever (YF), hospitalized at Eduardo de Menezes Hospital, Brazil, to be treated with sofosbuvir, a drug approved for hepatitis C. Given the absence of specific YF antiviral treatments, the off-label nonrandomized sofosbuvir treatment aimed to address high disease severity and the risk of fatal outcomes. Patients received a daily dose of 400 mg sofosbuvir from 4 to 10 days post-symptom onset. YF viral load (VL) comparisons were made between treated and nontreated patients who either survived or died. The genomic VL for the treated group steadily decreased after day 7 post-symptom onset, suggesting that sofosbuvir might reduce YF VL. This study underscores the urgent need for YF antiviral therapies, advocating for randomized clinical trials to further explore sofosbuvir's role in YF treatment.

4.
Microbiol Spectr ; 12(5): e0370323, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38511952

ABSTRACT

Between 2016 and 2018, Brazil experienced major sylvatic yellow fever (YF) outbreaks that caused hundreds of casualties, with Minas Gerais (MG) being the most affected state. These outbreaks provided a unique opportunity to assess the immune response triggered by the wild-type (WT) yellow fever virus (YFV) in humans. The plaque reduction neutralization test (PRNT) is currently the standard method to assess the humoral immune response to YFV by measuring neutralizing antibodies (nAbs). The present study aimed to evaluate the humoral immune response of patients from the 2017-2018 sylvatic YF outbreak in MG with different disease outcomes by using PRNTs with a WT YFV strain, isolated from the 2017-2018 outbreak, and a vaccine YFV strain. Samples from naturally infected YF patients were tested, in comparison with healthy vaccinees. Results showed that both groups presented different levels of nAb against the WT and vaccine strains, and the levels of neutralization against the strains varied homotypically and heterotypically. Results based on the geometric mean titers (GMTs) suggest that the humoral immune response after a natural infection of YFV can reach higher levels than that induced by vaccination (GMT of patients against WT YFV compared to GMT of vaccinees, P < 0.0001). These findings suggest that the humoral immune responses triggered by the vaccine and WT strains of YFV are different, possibly due to genetic and antigenic differences between these viruses. Therefore, current means of assessing the immune response in naturally infected YF individuals and immunological surveillance methods in areas with intense viral circulation may need to be updated.IMPORTANCEYellow fever is a deadly febrile disease caused by the YFV. Despite the existence of effective vaccines, this disease still represents a public health concern worldwide. Much is known about the immune response against the vaccine strains of the YFV, but recent studies have shown that it differs from that induced by WT strains. The extent of this difference and the mechanisms behind it are still unclear. Thus, studies aimed to better understand the immune response against this virus are relevant and necessary. The present study evaluated levels of neutralizing antibodies of yellow fever patients from recent outbreaks in Brazil, in comparison with healthy vaccinees, using plaque reduction neutralization tests with WT and vaccine YFV strains. Results showed that the humoral immune response in naturally infected patients was higher than that induced by vaccination, thus providing new insights into the immune response triggered against these viruses.


Subject(s)
Antibodies, Neutralizing , Antibodies, Viral , Disease Outbreaks , Immunity, Humoral , Yellow Fever Vaccine , Yellow Fever , Yellow fever virus , Yellow Fever/immunology , Yellow Fever/epidemiology , Yellow Fever/virology , Humans , Brazil/epidemiology , Yellow fever virus/immunology , Yellow fever virus/genetics , Antibodies, Neutralizing/blood , Antibodies, Neutralizing/immunology , Antibodies, Viral/blood , Antibodies, Viral/immunology , Male , Yellow Fever Vaccine/immunology , Female , Adult , Middle Aged , Vaccination , Neutralization Tests , Young Adult , Aged , Adolescent
5.
Free Radic Biol Med ; 213: 266-273, 2024 03.
Article in English | MEDLINE | ID: mdl-38278309

ABSTRACT

Yellow fever (YF) presents a wide spectrum of severity, with clinical manifestations in humans ranging from febrile and self-limited to fatal cases. Although YF is an old disease for which an effective and safe vaccine exists, little is known about the viral- and host-specific mechanisms that contribute to liver pathology. Several studies have demonstrated that oxidative stress triggered by viral infections contributes to pathogenesis. We evaluated whether yellow fever virus (YFV), when infecting human hepatocytes cells, could trigger an imbalance in redox homeostasis, culminating in oxidative stress. YFV infection resulted in a significant increase in reactive oxygen species (ROS) levels from 2 to 4 days post infection (dpi). When measuring oxidative parameters at 4 dpi, YFV infection caused oxidative damage to lipids, proteins, and DNA, evidenced by an increase in lipid peroxidation/8-isoprostane, carbonyl protein, and 8-hydroxy-2'-deoxyguanosine, respectively. Furthermore, there was a significant reduction in the activity of the antioxidant enzymes superoxide dismutase (SOD) and glutathione peroxidase (GPx), in addition to a reduction in the ratio of reduced to oxidized glutathione (GSH/GSSG), indicating a pro-oxidant environment. However, no changes were observed in the enzymatic activity of the enzyme catalase (CAT) or in the gene expression of SOD isoforms (1/2/3), CAT, or GPx. Therefore, our results show that YFV infection generates an imbalance in redox homeostasis, with the overproduction of ROS and depletion of antioxidant enzymes, which induces oxidative damage to cellular constituents. Moreover, as it has been demonstrated that oxidative stress is a conspicuous event in YFV infection, therapeutic strategies based on antioxidant biopharmaceuticals may be new targets for the treatment of YF.


Subject(s)
Antioxidants , Yellow Fever , Humans , Antioxidants/metabolism , Reactive Oxygen Species/metabolism , Yellow fever virus/metabolism , Glutathione/metabolism , Oxidative Stress , Oxidation-Reduction , Catalase/genetics , Catalase/metabolism , Superoxide Dismutase/genetics , Superoxide Dismutase/metabolism , Glutathione Disulfide/metabolism , Hepatocytes/metabolism , Lipid Peroxidation , Glutathione Peroxidase/metabolism , 8-Hydroxy-2'-Deoxyguanosine/metabolism
6.
Front Public Health ; 11: 1195779, 2023.
Article in English | MEDLINE | ID: mdl-37965526

ABSTRACT

Background: The COVID-19 pandemic had a major impact on indigenous populations. Understanding the viral dynamics within this population is essential to create targeted protection measures. Methods: A total of 204 SARS-CoV-2 positive samples collected between May 2020 and November 2021 from an indigenous area in Mato Grosso do Sul (MS), Midwestern Brazil, were screened. Samples were submitted to whole genome sequencing using the Nanopore sequencing platform. Clinical, demographic, and phylogenetic data were analyzed. Results: We found the co-circulation of six main SARS-CoV-2 lineages in the indigenous population, with the Zeta lineage being the most prevalent (27.66%), followed by B.1.1 (an ancestral strain) (20.21%), Gamma (14.36%) and Delta (13.83%). Other lineages represent 45.74% of the total. Our phylogenetic reconstruction indicates that multiple introduction events of different SARS-CoV-2 lineages occurred in the indigenous villages in MS. The estimated indigenous population mortality rate was 1.47%. Regarding the ethnicity of our cohort, 64.82% belong to the Guarani ethnicity, while 33.16% belong to the Terena ethnicity, with a slightly higher prevalence of males (53.43%) among females. Other ethnicities represent 2.01%. We also observed that almost all patients (89.55%) presented signs and symptoms related to COVID-19, being the most prevalent cough, fever, sore throat, and headache. Discussion: Our results revealed that multiple independent SARS-CoV-2 introduction events had occurred through time, probably due to indigenous mobility, since the villages studied here are close to urban areas in MS. The mortality rate was slightly below of the estimation for the state in the period studied, which we believe could be related to the small number of samples evaluated, the underreporting of cases and deaths among this population, and the inconsistency of secondary data available for this study. Conclusion: In this study, we showed the circulation of multiple SARS-CoV-2 variants in this population, which should be isolated and protected as they belong to the most fragile group due to their socioeconomic and cultural disparities. We reinforce the need for constant genomic surveillance to monitor and prevent the spread of new emerging viruses and to better understand the viral dynamics in these populations, making it possible to direct specific actions.


Subject(s)
COVID-19 , SARS-CoV-2 , Male , Female , Humans , SARS-CoV-2/genetics , COVID-19/epidemiology , Brazil/epidemiology , Pandemics , Phylogeny , Genomics
7.
Clin Immunol ; 251: 109321, 2023 06.
Article in English | MEDLINE | ID: mdl-37019421

ABSTRACT

This study described a soluble mediator storm in acute Yellow Fever/YF infection along the kinetics timeline towards convalescent disease. The analyses of the YF Viral RNAnemia, chemokines, cytokines, and growth factors were performed in YF patients at acute/(D1-15) and convalescent/(D16-315) phases. Patients with acute YF infection displayed a trimodal viremia profile spreading along D3, D6, and D8-14. A massive storm of mediators was observed in acute YF. Higher levels of mediators were observed in YF with higher morbidity scores, patients under intensive care, and those progressing to death than in YF patients who progress to late-relapsing hepatitis/L-Hep. A unimodal peak of biomarkers around D4-6 with a progressive decrease towards D181-315 was observed in non-L-Hep patients, while a bimodal pattern with a second peak around D61-90 was associated with L-Hep. This study provided a comprehensive landscape of evidence that distinct immune responses drive pathogenesis, disease progression, and L-Hep in YF patients.


Subject(s)
Hepatitis , Yellow Fever Vaccine , Yellow Fever , Humans , Yellow Fever/pathology , Prognosis , Cytokines , Biomarkers
8.
Clin Infect Dis ; 77(4): 565-573, 2023 08 22.
Article in English | MEDLINE | ID: mdl-37099356

ABSTRACT

BACKGROUND: Late-relapsing hepatitis after yellow fever (LHep-YF) during the convalescent phase of the disease has been described during recent yellow fever (YF) outbreaks in Brazil. LHep-YF is marked by a rebound in liver enzymes and nonspecific clinical manifestations around 46-60 days after YF symptom onset. METHODS: Here we have characterized the clinical course and risk factors for LHep-YF using data from a representative cohort of patients who survived YF in Brazil, 2017-2018. A total of 221 YF-positive patients were discharged from the infectious disease reference hospital in Minas Gerais and were followed up at 30, 45, and 60 days post-symptom onset. RESULTS: From 46 to 60 days post-symptom onset, 16% of YF patients (n = 36/221) exhibited a rebound of aminotransferases (aspartate aminotransferase or alanine aminotransferase >500 IU/L), alkaline phosphatase, and total bilirubin levels. Other etiologies of liver inflammation such as infectious hepatitis, autoimmune hepatitis, and metabolic liver disease were ruled out. Jaundice, fatigue, headache, and low platelet levels were associated with LHep-YF. Demographic factors, clinical manifestations, laboratory tests, ultrasound findings, and viral load during the acute phase of YF were not associated with the occurrence of LHep-YF. CONCLUSIONS: These findings provide new data on the clinical course of Late-relapsing hepatitis during the convalescent phase of YF and highlight the need for extended patient follow-up after acute YF.


Subject(s)
Hepatitis A , Hepatitis , Yellow Fever Vaccine , Yellow Fever , Humans , Yellow Fever/complications , Yellow Fever/epidemiology , Disease Outbreaks , Risk Factors , Hepatitis/epidemiology , Hepatitis A/epidemiology , Brazil/epidemiology , Disease Progression
9.
J Clin Microbiol ; 60(8): e0025422, 2022 08 17.
Article in English | MEDLINE | ID: mdl-35916519

ABSTRACT

Prior studies have demonstrated prolonged presence of yellow fever virus (YFV) RNA in saliva and urine as an alternative to serum. To investigate the presence of YFV RNA in urine, we used RT-PCR for YFV screening in 60 urine samples collected from a large cohort of naturally infected yellow fever (YF) patients during acute and convalescent phases of YF infection from recent YF outbreaks in Brazil (2017 to 2018). Fifteen urine samples from acute phase infection (up to 15 days post-symptom onset) and four urine samples from convalescent phase infection (up to 69 days post-symptom onset), were YFV PCR-positive. We genotyped YFV detected in seven urine samples (five collected during the acute phase and two collected during the YF convalescent phase). Genotyping indicated the presence of YFV South American I genotype in these samples. To our knowledge, this is the first report of wild-type YFV RNA detection in the urine this far out from symptom onset (up to 69 DPS), including YFV RNA detection during the convalescent phase of YF infection. The detection of YFV RNA in urine is an indicative of YFV infection; however, the results of RT-PCR using urine as sample should be interpreted with care, since a negative result does not exclude the possibility of YFV infection. With a possible prolonged period of detection beyond the viremic phase, the use of urine samples coupled with serological tests, epidemiologic inquiry, and clinical assessment could provide a longer diagnostic window for laboratory YF diagnosis.


Subject(s)
Yellow Fever , Brazil/epidemiology , Disease Outbreaks , Humans , RNA , Yellow Fever/diagnosis , Yellow fever virus/genetics
10.
Front Med (Lausanne) ; 9: 896352, 2022.
Article in English | MEDLINE | ID: mdl-35677819

ABSTRACT

Since March 2020, SARS-CoV-2 has plagued the world with COVID-19 and individuals of all ages have experienced varying symptoms of disease. Older adults were experiencing more severe disease compared to children and were prioritized by vaccination efforts. While biologic therapies and vaccinations were implemented, there were changes in public health restrictions with subsequent surges resulting in more infected children. During these surges there was a rise of different SARS-CoV-2 variants with the dominant variant initially alpha (B.1.1.7 and other Pango lineages) and epsilon (B.1.427/B.1.429) in early 2021 and a dramatic shift to delta (B.1.617.2 and other Pango lineages) by mid-summer 2021. In this study we aimed to characterize the clinical severity and host factors associated with disease by SARS-CoV-2 variant and evaluate if there are differences in disease severity by circulating variant. We retrospectively included all individuals 0-25 years of age who presented to our center and had a positive SARS-CoV-2 RT-PCR, SARS-CoV-2 variant mutation testing, and documented clinical notes from 1 January 2021 through 31 December 2021. We identified 745 individuals who met inclusion criteria and found the delta variant was associated with severe/critical disease compared to the other variants studied. The results of the model showed that underlying respiratory disease and diabetes were risk factors for progression to severe disease. These insights are important when evaluating public health measures and treatment options for children as more variants arise.

11.
Front Virol ; 22022.
Article in English | MEDLINE | ID: mdl-37461745

ABSTRACT

Yellow fever virus (YFV) is the causative agent of yellow fever (YF), a hemorrhagic and viscerotropic acute disease. Severe YF has been described in approximately 15-25% of YF patients, with 20-50% of severe YF cases being fatal. Here we analyzed cerebrospinal fluid (CSF) samples collected during the YF outbreak in Brazil in 2018, aiming to investigate CNS neuroinvasion in fatal YFV cases. YFV RNA was screened by RT-qPCR targeting the 3'UTR region of the YFV genome in CSF. CSF samples were tested for the presence of anti-YFV IgM and neutralizing antibodies, coupled with routine laboratory examinations. Among the 13 patients studied, we detected anti-YFV IgM in CSF from eight patients and YFV RNA in CSF from five patients. YFV RNA genomic load in CSF samples ranged from 1.75×103 to 5.42×103 RNA copies/mL. We genotyped YFV from three CSF samples that grouped with other YFV samples from the 2018 outbreak in Brazil within the South-American I genotype. Even though descriptions of neurologic manifestations due to wild type YFV (WT-YFV) infection are rare, since the last YF outbreak in Brazil in 2017-2018, a few studies have demonstrated WT-YFV RNA in CSF samples from YF fatal cases. Serological tests indicated the presence of IgM and neutralizing antibodies against YFV in CSF samples from two patients. Although the presence of viral RNA, IgM and neutralizing antibodies in CSF samples could indicate neuroinvasiveness, further studies are needed to better elucidate the role of YFV neuroinvasion and possible impacts in disease pathogenesis.

12.
PLOS Glob Public Health ; 2(7): e0000505, 2022.
Article in English | MEDLINE | ID: mdl-36962424

ABSTRACT

The Rift Valley fever virus (RVFV) is a zoonotic arbovirus that can also transmit directly to humans from livestock. Previous studies have shown consumption of sick animal products are risk factors for RVFV infection, but it is difficult to disentangle those risk factors from other livestock rearing activities. Urban areas have an increased demand for animal source foods, different vector distributions, and various arboviruses are understood to establish localized urban transmission cycles. Thus far, RVFV is an unevaluated public health risk in urban areas within endemic regions. We tested participants in our ongoing urban cohort study on dengue (DENV) and chikungunya (CHIKV) virus for RVFV exposure and found 1.6% (57/3,560) of individuals in two urban areas of Kenya had anti-RVFV IgG antibodies. 88% (50/57) of RVFV exposed participants also had antibodies to DENV, CHIKV, or both. Although livestock ownership was very low in urban study sites, RVFV exposure was overall significantly associated with seeing goats around the homestead (OR = 2.34 (CI 95%: 1.18-4.69, p = 0.02) and in Kisumu, RVFV exposure was associated with consumption of raw milk (OR = 6.28 (CI 95%: 0.94-25.21, p = 0.02). In addition, lack of piped water and use of small jugs (15-20 liters) for water was associated with a higher risk of RVFV exposure (OR = 5.36 (CI 95%: 1.23-16.44, p = 0.01) and this may contribute to interepidemic vector-borne maintenance of RVFV. We also investigated perception towards human vaccination for RVFV and identified high acceptance (91% (97/105) at our study sites. This study provides baseline evidence to guide future studies investigating the urban potential of RVFV and highlights the unexplored role of animal products in continued spread of RVFV.

13.
Vaccine ; 39(31): 4359-4372, 2021 07 13.
Article in English | MEDLINE | ID: mdl-34147295

ABSTRACT

In the present study, a range of serum biomarkers were quantified in suspected cases of adverse events following YF immunization (YEL-AEFI) to propose a reliable laboratorial algorithm to discriminate confirmed YEL-AEFI ("A1" class) from cases with other illnesses ("C" class). Our findings demonstrated that increased levels of CXCL8, CCL2, CXCL10, IL-1ß, IL-6 and TNF-α were observed in YEL-AEFI ("A1" and "C" classes) as compared to primary vaccines without YEL-AEFI [PV(day 3-28)] and reference range (RR) controls. Notably, increased levels of CCL3, CCL4, CCL2, CCL5, IL-1ß, IL-15, IL-1Ra and G-CSF were found in "A1" as compared to "C" class. Venn diagrams analysis allowed the pre-selection of biomarkers for further analysis of performance indices. Data demonstrated that CCL3, CCL5, IL-15 and IL-1Ra presented high global accuracy (AUC = 1.00) to discriminate "A1" from "C". Decision tree was proposed with a reliable algorithm to discriminate YEL-AEFI cases according to cause-specific definitions with outstanding overall accuracy (91%). CCL3, CCL5, IL-15 and IL-1Ra appears as root attributes to identify "A1" followed by VEGF as branch nodes to discriminate Wild Type YFV infection ("C(WT-YFV)") from cases with other illnesses ("C*"). Together, these results demonstrated the applicability of serum biomarker measurements as putative parameters towards the establishment of accurate laboratorial tools for complementary differential diagnosis of YEL-AEFI cases.


Subject(s)
Yellow Fever Vaccine , Yellow Fever , Algorithms , Chemokine CCL5 , Humans , Interleukin 1 Receptor Antagonist Protein , Interleukin-15 , Vaccination , Vascular Endothelial Growth Factor A
14.
Sci Total Environ ; 766: 142645, 2021 Apr 20.
Article in English | MEDLINE | ID: mdl-33069469

ABSTRACT

The world is experiencing the worst global health crisis in recent decades since December/2019 due to a new pandemic coronavirus. The COVID-19 disease, caused by SARS-CoV-2, has resulted in more than 30 million cases and 950 thousand deaths worldwide as of September 21, 2020. Determining the extent of the virus on public surfaces is critical for understanding the potential risk of infection in these areas. In this study, we investigated the presence of SARS-CoV-2 RNA on public surfaces in a densely populated urban area in Brazil. Forty-nine of 933 samples tested positive (5.25%) for SARS-CoV-2 RNA, including samples collected from distinct material surfaces, including metal and concrete, and distinct places, mainly around hospital care units and public squares. Our data indicated the contamination of public surfaces by SARS-CoV-2, suggesting the circulation of infected patients and the risk of infection for the population. Constant monitoring of the virus in urban areas is required as a strategy to fight the pandemic and prevent further infections.


Subject(s)
COVID-19 , SARS-CoV-2 , Brazil/epidemiology , Humans , Pandemics , RNA, Viral
15.
PLoS Negl Trop Dis ; 14(10): e0008658, 2020 10.
Article in English | MEDLINE | ID: mdl-33017419

ABSTRACT

BACKGROUND: From the end of 2016 until the beginning of 2019, Brazil faced a massive sylvatic yellow fever (YF) outbreak. The 2016-2019 YF epidemics affected densely populated areas, especially the Southeast region, causing thousands of deaths of humans and non-human primates (NHP). METHODOLOGY/PRINCIPAL FINDINGS: We conducted a molecular investigation of yellow fever virus (YFV) RNA in 781 NHP carcasses collected in the urban, urban-rural interface, and rural areas of Minas Gerais state, from January 2017 to December 2018. Samples were analyzed according to the period of sampling, NHP genera, sampling areas, and sampling areas/NHP genera to compare the proportions of YFV-positive carcasses and the estimated YFV genomic loads. YFV infection was confirmed in 38.1% of NHP carcasses (including specimens of the genera Alouatta, Callicebus, Callithrix, and Sapajus), from the urban, urban-rural interface, and rural areas. YFV RNA detection was positively associated with epidemic periods (especially from December to March) and the rural environment. Higher median viral genomic loads (one million times) were estimated in carcasses collected in rural areas compared to urban ones. CONCLUSIONS/SIGNIFICANCE: The results showed the wide occurrence of YF in Minas Gerais in epidemic and non-epidemic periods. According to the sylvatic pattern of YF, a gradient of viral dissemination from rural towards urban areas was observed. A high YF positivity was observed for NHP carcasses collected in urban areas with a widespread occurrence in 67 municipalities of Minas Gerais, including large urban centers. Although there was no documented case of urban/Aedes YFV transmission to humans in Brazil during the 2016-2019 outbreaks, YFV-infected NHP in urban areas with high infestation by Aedes aegypti poses risks for YFV urban/Aedes transmission and urbanization.


Subject(s)
Yellow Fever/epidemiology , Yellow Fever/prevention & control , Yellow Fever/transmission , Zoonoses/virology , Aedes/virology , Alouatta/virology , Animals , Brazil/epidemiology , Callicebus/virology , Callithrix/virology , Disease Reservoirs/virology , Epidemics , Genome, Viral , Humans , Mosquito Vectors/virology , Primates/virology , Sapajus/virology , Yellow fever virus/isolation & purification , Yellow fever virus/pathogenicity , Zoonoses/epidemiology , Zoonoses/transmission
16.
Viruses ; 12(2)2020 02 17.
Article in English | MEDLINE | ID: mdl-32079143

ABSTRACT

One patient presented hyporexia, asthenia, adynamia, and jaundice two months after acute yellow fever (YF) onset; plus laboratory tests indicating hepatic cytolysis and a rebound of alanine and aspartate transaminases, and total and direct bilirubin levels. Laboratory tests discarded autoimmune hepatitis, inflammatory or metabolic liver disease, and new infections caused by hepatotropic agents. Anti-YFV IgM, IgG and neutralizing antibodies were detected in different times, but no viremia. A liver biopsy was collected three months after YF onset and tested positive for YFV antigens and wild-type YFV-RNA (364 RNA-copies/gram/liver). Transaminases and bilirubin levels remained elevated for five months, and the arresting of symptoms persisted for six months after the acute YF onset. Several serum chemokines, cytokines, and growth factors were measured. A similar immune response profile was observed in the earlier phases of the disease, followed by more pronounced changes in the later stages, when transaminases levels returned to normal. The results indicated viral persistence in the liver and continual liver cell damage three months after YF onset and reinforced the need for extended follow-ups of YF patients. Further studies to investigate the role of possible viral persistence and the immune response causing relapsing hepatitis following YF are also necessary.


Subject(s)
Antibodies, Viral/blood , Hepatitis A/diagnosis , Liver/virology , Yellow Fever/complications , Acute Disease , Antibodies, Neutralizing/blood , Biopsy , Cytokines/blood , Hepatitis A/immunology , Humans , Jaundice/virology , Liver/pathology , Liver Function Tests , Male , Middle Aged , Recurrence , Time Factors , Yellow fever virus/classification , Yellow fever virus/immunology
17.
Virol J ; 17(1): 9, 2020 01 23.
Article in English | MEDLINE | ID: mdl-31973727

ABSTRACT

Yellow fever (YF) is an acute viral disease, affecting humans and non-human primates (NHP), caused by the yellow fever virus (YFV). Despite the existence of a safe vaccine, YF continues to cause morbidity and mortality in thousands of people in Africa and South America. Since 2016, massive YF outbreaks have taken place in Brazil, reaching YF-free zones, causing thousands of deaths of humans and NHP. Here we reviewed the main epidemiological aspects, new clinical findings in humans, and issues regarding YFV infection in vectors and NHP in Brazil. The 2016-2019 YF epidemics have been considered the most significant outbreaks of the last 70 years in the country, and the number of human cases was 2.8 times higher than total cases in the previous 36 years. A new YFV lineage was associated with the recent outbreaks, with persistent circulation in Southeast Brazil until 2019. Due to the high number of infected patients, it was possible to evaluate severity and death predictors and new clinical features of YF. Haemagogus janthinomys and Haemagogus leucocelaenus were considered the primary vectors during the outbreaks, and no human case suggested the occurrence of the urban transmission cycle. YFV was detected in a variety of NHP specimens presenting viscerotropic disease, similar to that described experimentally. Further studies regarding NHP sensitivity to YFV, YF pathogenesis, and the duration of the immune response in NHP could contribute to YF surveillance, control, and future strategies for NHP conservation.


Subject(s)
Yellow Fever , Yellow fever virus , Aedes/virology , Animals , Brazil/epidemiology , Culicidae/virology , Disease Outbreaks , Disease Reservoirs/virology , Epidemics , Humans , Mosquito Vectors/virology , Primates/virology , Virus Diseases/epidemiology , Yellow Fever/epidemiology , Yellow Fever/prevention & control , Yellow Fever/transmission , Yellow fever virus/immunology , Yellow fever virus/isolation & purification , Yellow fever virus/pathogenicity , Zoonoses/epidemiology , Zoonoses/transmission , Zoonoses/virology
18.
Vaccines (Basel) ; 7(4)2019 Dec 04.
Article in English | MEDLINE | ID: mdl-31817103

ABSTRACT

The yellow fever (YF) vaccine consists of an attenuated virus, and despite its relative safety, some adverse events following YF vaccination have been described. At the end of 2016, Brazil experienced the most massive sylvatic yellow fever outbreak over the last 70 years and an intense campaign of YF vaccination occurred in Minas Gerais state in Southeast Brazil from 2016 to 2018. The present study aimed to develop a genotyping tool and investigate 21 cases of suspected adverse events following YF vaccination. Initial in silico analyses were performed using partial NS5 nucleotide sequences to verify the discriminatory potential between wild-type and vaccine viruses. Samples from patients were screened for the presence of the YFV RNA, using 5'UTR as the target, and then used for amplification of partial NS5 gene amplification, sequencing, and phylogenetic analysis. Genotyping indicated that 17 suspected cases were infected by the wild-type yellow fever virus, but four cases remained inconclusive. The genotyping tool was efficient in distinguishing the vaccine from wild-type virus, and it has the potential to be used for the differentiation of all yellow fever virus genotypes.

19.
Article in English | MEDLINE | ID: mdl-31618377

ABSTRACT

Chikungunya virus (CHIKV) is an arbovirus that emerged in the Americas in 2013. Infection with CHIKV is symptomatic in most of the cases and patients can develop chronic arthralgia that lasts from months to years in over 40% of the cases. The East-Central-South Africa (ECSA) genotype was introduced in Brazil in 2014, in Bahia State. Here we report the circulation of the CHIKV ECSA genotype in Piaui State, Northeast Brazil, during the years 2016-2017. The phylogenetic analysis revealed a single introduction of this lineage probably in 2015 and its maintenance at least until 2017. This analysis has also demonstrated the proximity of this genotype with isolates from neighboring States, and its partial nucleotide sequence of the viral E1 gene revealed a synapomorphy synonyms. This finding highlights the spread of the ECSA genotype in Brazil and supports its circulation in the Brazilian Northeast.


Subject(s)
Chikungunya Fever/virology , Chikungunya virus/genetics , Genome, Viral/genetics , Base Sequence , Brazil/epidemiology , Chikungunya Fever/epidemiology , Disease Outbreaks , Genotype , Humans , Phylogeny , Reverse Transcriptase Polymerase Chain Reaction , South Africa
20.
Sci Rep ; 8(1): 16034, 2018 10 30.
Article in English | MEDLINE | ID: mdl-30375482

ABSTRACT

In Africa, Old World Primates are involved in the maintenance of sylvatic circulation of ZIKV. However, in Brazil, the hosts for the sylvatic cycle remain unknown. We hypothesized that free-living NHPs might play a role in urban/periurban ZIKV dynamics, thus we undertook an NHP ZIKV investigation in two cities in Brazil. We identified ZIKV-positive NHPs and sequences obtained were phylogenetically related to the American lineage of ZIKV. Additionally, we inoculated four C. penicillata with ZIKV and our results demonstrated that marmosets had a sustained viremia. The natural and experimental infection of NHPs with ZIKV, support the hypothesis that NHPs may be a vertebrate host in the maintainance of ZIKV transmission/circulation in urban tropical settings. Further studies are needed to understand the role they may play in maintaining the urban cycle of the ZIKV and how they may be a conduit in establishing an enzootic transmission cycle in tropical Latin America.


Subject(s)
Disease Reservoirs/virology , Primates/virology , Zika Virus Infection/virology , Zika Virus/pathogenicity , Aedes/virology , Africa , Animals , Brazil , Humans , Phylogeny , Viremia , Zika Virus Infection/transmission
SELECTION OF CITATIONS
SEARCH DETAIL