Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
AJNR Am J Neuroradiol ; 42(9): 1735-1739, 2021 09.
Article in English | MEDLINE | ID: mdl-34210665

ABSTRACT

BACKGROUND AND PURPOSE: Spinocerebellar ataxia type 7 is an autosomal dominant neurodegenerative disease caused by a cytosine-adenine-guanine (CAG) repeat expansion. Clinically, spinocerebellar ataxia type 7 is characterized by progressive cerebellar ataxia, pyramidal signs, and macular degeneration. In vivo MR imaging studies have shown extensive gray matter degeneration in the cerebellum and, to a lesser extent, in a range of cortical cerebral areas. The purpose of this study was to evaluate the impact of the disease in the spinal cord and its relationship with the patient's impairment. MATERIALS AND METHODS: Using a semiautomated procedure applied to MR imaging data, we analyzed spinal cord area and eccentricity in a cohort of 48 patients with spinocerebellar ataxia type 7 and compared them with matched healthy controls. The motor impairment in the patient group was evaluated using the Scale for Assessment and Rating of Ataxia. RESULTS: Our analysis showed a significantly smaller cord area (t = 9.04, P < .001, d = 1.31) and greater eccentricity (t = -2.25, P =. 02, d = 0.32) in the patient group. Similarly, smaller cord area was significantly correlated with a greater Scale for Assessment and Rating of Ataxia score (r = -0.44, P = .001). A multiple regression model showed that the spinal cord area was strongly associated with longer CAG repetition expansions (P = .002) and greater disease duration (P = .020). CONCLUSIONS: Our findings indicate that cervical spinal cord changes are progressive and clinically relevant features of spinocerebellar ataxia type 7, and future investigation of these measures as candidate biomarkers is warranted.


Subject(s)
Cervical Cord , Spinocerebellar Ataxias , Cerebellum , Humans , Magnetic Resonance Imaging , Spinocerebellar Ataxias/complications , Spinocerebellar Ataxias/diagnostic imaging , Spinocerebellar Ataxias/genetics
2.
AJNR Am J Neuroradiol ; 42(3): 610-615, 2021 03.
Article in English | MEDLINE | ID: mdl-33478946

ABSTRACT

BACKGROUND AND PURPOSE: Spinal cord damage is a hallmark of hereditary spastic paraplegias, but it is still not clear whether specific subtypes of the disease have distinctive patterns of spinal cord gray (GM) and white (WM) matter involvement. We compared cervical cross-sectional GM and WM areas in patients with distinct hereditary spastic paraplegia subtypes. We also assessed whether these metrics correlated with clinical parameters. MATERIALS AND METHODS: We analyzed 37 patients (17 men; mean age, 47.3 [SD, 16.5] years) and 21 healthy controls (7 men; mean age, 42.3 [SD, 13.2] years). There were 7 patients with spastic paraplegia type 3A (SPG3A), 12 with SPG4, 10 with SPG7, and 8 with SPG11. Image acquisition was performed on a 3T MR imaging scanner, and T2*-weighted 2D images were assessed by the Spinal Cord Toolbox. Statistical analyses were performed in SPSS using nonparametric tests and false discovery rate-corrected P values < .05. RESULTS: The mean disease duration for the hereditary spastic paraplegia group was 22.4 [SD, 13.8] years and the mean Spastic Paraplegia Rating Scale score was 22.8 [SD, 11.0]. We failed to identify spinal cord atrophy in SPG3A and SPG7. In contrast, we found abnormalities in patients with SPG4 and SPG11. Both subtypes had spinal cord GM and WM atrophy. SPG4 showed a strong inverse correlation between GM area and disease duration (ρ = -0.903, P < .001). CONCLUSIONS: Cervical spinal cord atrophy is found in some but not all hereditary spastic paraplegia subtypes. Spinal cord damage in SPG4 and 11 involves both GM and WM.


Subject(s)
Gray Matter/pathology , Spastic Paraplegia, Hereditary/pathology , Spinal Cord/pathology , White Matter/pathology , Adult , Cross-Sectional Studies , Female , Humans , Magnetic Resonance Imaging/methods , Male , Middle Aged
3.
Eur J Neurol ; 26(3): 483-489, 2019 03.
Article in English | MEDLINE | ID: mdl-30326180

ABSTRACT

BACKGROUND AND PURPOSE: Friedreich's ataxia (FRDA) is the most common autosomal-recessive ataxia worldwide. It is characterized by early onset, sensory abnormalities and slowly progressive ataxia. All magnetic resonance imaging (MRI)-based studies have focused on the evaluation of adult patients. Therefore, we designed a cross-sectional multimodal MRI-based study to investigate the anatomical substrates involved in the early stages of FRDA. METHODS: We enrolled 37 patients (12 children) and 38 controls. All subjects underwent MRI in a 3T device to assess gray and white matter. We used measures from FreeSurfer and CERES to evaluate the cerebral and cerebellar cortices. The T1 multiatlas assessed deep gray matter. The diffusion tensor imaging multiatlas was used to investigate microstructural abnormalities in brain white matter and SpineSeg was used to assess the cervical spinal cord. All analyses were corrected for multiple comparisons. RESULTS: Comparison with age-matched controls showed that pediatric patients have spinal cord, inferior cerebellar peduncle and red nucleus damage. In contrast, adult patients showed more widespread white matter damage than pediatric patients. With regard to gray matter, we found cortical thinning at the left central sulcus and volumetric reduction in the thalami and hippocampi only in adult patients. Finally, values of fractional anisotropy in adult patients and radial diffusivity in pediatric patients from the inferior cerebellar peduncle correlated with disease duration and ataxia severity, respectively. CONCLUSIONS: Structural damage in FRDA begins in the spinal cord and inferior cerebellar peduncle as well as the red nucleus, and progresses to cerebral areas in adulthood. These results shed some light on the early stages of FRDA and highlight potential neuroimaging markers for therapeutic trials.


Subject(s)
Friedreich Ataxia , Gray Matter , White Matter , Adolescent , Adult , Aged , Child , Cross-Sectional Studies , Female , Friedreich Ataxia/diagnostic imaging , Friedreich Ataxia/pathology , Gray Matter/diagnostic imaging , Gray Matter/pathology , Humans , Magnetic Resonance Imaging , Male , Middle Aged , White Matter/diagnostic imaging , White Matter/pathology , Young Adult
4.
Mol Neurobiol ; 55(7): 5689-5697, 2018 Jul.
Article in English | MEDLINE | ID: mdl-29039020

ABSTRACT

There is increasing evidence suggesting that one of the most relevant pathophysiological features of Alzheimer's disease (AD) is neuroinflammation, which plays an important role in the production and regulation of AD-related proteins (amyloid beta (Aß) and Tau) and exacerbates AD pathology. Neuroinflammation can also be induced by systemic influences (factors from outside the central nervous system). However, the role of systemic inflammation in AD pathophysiology is much less understood. Thus, our main objective in this study was to verify whether the presence of serum cytokines (IL-1ß, IL-6, IL-10, IL-12, and TNF-α) affects different AD biomarkers: Aß1-42 and Tau protein levels, hippocampal volumes (HV), and default mode network functional connectivity (DMN FC) in healthy elderly controls, amnestic mild cognitive impairment (aMCI) patients due to AD, and mild AD patients. To accomplish this, we acquired 3-T MRI, blood, and cerebrospinal fluid (CSF) samples from 42 healthy controls, 55 aMCI patients due to AD, and 33 mild AD patients. Comparing the groups, we found that the mild AD patients presented smaller HV, disrupted DMN FC, and proportionally less IL-1ß than the controls. The aMCI patients only differed from the controls in DMN FC. In intra-group comparison, aMCI and mild AD with detectable levels of cytokines (TNF-α, IL-1ß, IL-10, and IL-12) had decreased DMN FC. On the other hand, patients with detectable levels of IL-10 and IL-12 presented a more favorable AD biomarkers profile (larger HV, more CSF Aß1-42, and less p-Tau), indicating a possible protective role of these ILs. Our findings indicate a possible relationship between systemic inflammation with DMN FC disruption, hippocampal atrophy, and CSF protein levels in the subjects with mild AD and aMCI.


Subject(s)
Alzheimer Disease/cerebrospinal fluid , Alzheimer Disease/complications , Biomarkers/cerebrospinal fluid , Cognitive Dysfunction/cerebrospinal fluid , Cognitive Dysfunction/complications , Inflammation/cerebrospinal fluid , Inflammation/complications , Aged , Alzheimer Disease/diagnostic imaging , Case-Control Studies , Cognitive Dysfunction/diagnostic imaging , Cytokines/cerebrospinal fluid , Female , Humans , Inflammation/diagnostic imaging , Magnetic Resonance Imaging , Male , Middle Aged , Neuropsychological Tests
5.
AJNR Am J Neuroradiol ; 37(8): 1405-12, 2016 Aug.
Article in English | MEDLINE | ID: mdl-27173364

ABSTRACT

BACKGROUND AND PURPOSE: Polyglutamine expansion spinocerebellar ataxias are autosomal dominant slowly progressive neurodegenerative diseases with no current treatment. MR imaging is the best-studied surrogate biomarker candidate for polyglutamine expansion spinocerebellar ataxias, though with conflicting results. We aimed to review quantitative central nervous system MR imaging technique findings in patients with polyglutamine expansion spinocerebellar ataxias and correlations with well-established clinical and molecular disease markers. MATERIALS AND METHODS: We searched MEDLINE, LILACS, and Cochrane data bases of clinical trials between January 1995 and January 2016, for quantitative MR imaging volumetric approaches, MR spectroscopy, diffusion tensor imaging, or other quantitative techniques, comparing patients with polyglutamine expansion spinocerebellar ataxias (SCAs) with controls. Pertinent details for each study regarding participants, imaging methods, and results were extracted. RESULTS: After reviewing the 706 results, 18 studies were suitable for inclusion: 2 studies in SCA1, 1 in SCA2, 15 in SCA3, 1 in SCA7, 1 in SCA1 and SCA6 presymptomatic carriers, and none in SCA17 and dentatorubropallidoluysian atrophy. Cerebellar hemispheres and vermis, whole brain stem, midbrain, pons, medulla oblongata, cervical spine, striatum, and thalamus presented significant atrophy in SCA3. The caudate, putamen and whole brain stem presented similar sensitivity to change compared with ataxia scales after 2 years of follow-up in a single prospective study in SCA3. MR spectroscopy and DTI showed abnormalities only in cross-sectional studies in SCA3. Results from single studies in other polyglutamine expansion spinocerebellar ataxias should be replicated in different cohorts. CONCLUSIONS: Additional cross-sectional and prospective volumetric analysis, MR spectroscopy, and DTI studies are necessary in polyglutamine expansion spinocerebellar ataxias. The properties of preclinical disease biomarkers (presymptomatic) of MR imaging should be targeted in future studies.


Subject(s)
Neuroimaging/methods , Spinocerebellar Ataxias/diagnostic imaging , Spinocerebellar Ataxias/pathology , Adult , Female , Humans , Male
6.
Eur J Neurol ; 22(2): 277-83, e23-4, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25251537

ABSTRACT

BACKGROUND AND PURPOSE: Machado-Joseph disease (MJD/SCA3) is the most frequent spinocerebellar ataxia, characterized by brainstem, basal ganglia and cerebellar damage. Few magnetic resonance imaging based studies have investigated damage in the cerebral cortex. The objective was to determine whether patients with MJD/SCA3 have cerebral cortex atrophy, to identify regions more susceptible to damage and to look for the clinical and neuropsychological correlates of such lesions. METHODS: Forty-nine patients with MJD/SCA3 (mean age 47.7 ± 13.0 years, 27 men) and 49 matched healthy controls were enrolled. All subjects underwent magnetic resonance imaging scans in a 3 T device, and three-dimensional T1 images were used for volumetric analyses. Measurement of cortical thickness and volume was performed using the FreeSurfer software. Groups were compared using ancova with age, gender and estimated intracranial volume as covariates, and a general linear model was used to assess correlations between atrophy and clinical variables. RESULTS: Mean CAG expansion, Scale for Assessment and Rating of Ataxia (SARA) score and age at onset were 72.1 ± 4.2, 14.7 ± 7.3 and 37.5 ± 12.5 years, respectively. The main findings were (i) bilateral paracentral cortex atrophy, as well as the caudal middle frontal gyrus, superior and transverse temporal gyri, and lateral occipital cortex in the left hemisphere and supramarginal gyrus in the right hemisphere; (ii) volumetric reduction of basal ganglia and hippocampi; (iii) a significant correlation between SARA and brainstem and precentral gyrus atrophy. Furthermore, some of the affected cortical regions showed significant correlations with neuropsychological data. CONCLUSIONS: Patients with MJD/SCA3 have widespread cortical and subcortical atrophy. These structural findings correlate with clinical manifestations of the disease, which support the concept that cognitive/motor impairment and cerebral damage are related in disease.


Subject(s)
Basal Ganglia/pathology , Brain Stem/pathology , Cerebral Cortex/pathology , Machado-Joseph Disease/pathology , Adult , Atrophy/pathology , Female , Humans , Magnetic Resonance Imaging , Male , Middle Aged
SELECTION OF CITATIONS
SEARCH DETAIL
...