Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Front Microbiol ; 15: 1357797, 2024.
Article in English | MEDLINE | ID: mdl-38463486

ABSTRACT

Plant microbiomes are known to serve several important functions for their host, and it is therefore important to understand their composition as well as the factors that may influence these microbial communities. The microbiome of Thalassia testudinum has only recently been explored, and studies to-date have primarily focused on characterizing the microbiome of plants in a single region. Here, we present the first characterization of the composition of the microbial communities of T. testudinum across a wide geographical range spanning three distinct regions with varying physicochemical conditions. We collected samples of leaves, roots, sediment, and water from six sites throughout the Atlantic Ocean, Caribbean Sea, and the Gulf of Mexico. We then analyzed these samples using 16S rRNA amplicon sequencing. We found that site and region can influence the microbial communities of T. testudinum, while maintaining a plant-associated core microbiome. A comprehensive comparison of available microbial community data from T. testudinum studies determined a core microbiome composed of 14 ASVs that consisted mostly of the family Rhodobacteraceae. The most abundant genera in the microbial communities included organisms with possible plant-beneficial functions, like plant-growth promoting taxa, disease suppressing taxa, and nitrogen fixers.

2.
Proc Biol Sci ; 286(1900): 20182745, 2019 04 10.
Article in English | MEDLINE | ID: mdl-30940058

ABSTRACT

Humans have restructured food webs and ecosystems by depleting biomass, reducing size structure and altering traits of consumers. However, few studies have examined the ecological impacts of human-induced trait changes across large spatial and temporal scales and species assemblages. We compared behavioural traits and predation rates by predatory fishes on standard squid prey in protected areas of different protection levels and ages, and found that predation rates were 6.5 times greater at old, no-take (greater than 40 years) relative to new, predominantly partial-take areas (approx. 8 years), even accounting for differences in predatory fish abundance, body size and composition across sites. Individual fishes in old protected areas consumed prey at nearly twice the rate of fishes of the same species and size at new protected areas. Predatory fish exhibited on average 50% longer flight initiation distance and lower willingness to forage at new protected areas, which partially explains lower foraging rates at new relative to old protected areas. Our experiments demonstrate that humans can effect changes in functionally important behavioural traits of predator guilds at large (30 km) spatial scales within managed areas, which require protection for multiple generations of predators to recover bold phenotypes and predation rates, even as abundance rebounds.


Subject(s)
Ecosystem , Fishes/physiology , Food Chain , Human Activities , Predatory Behavior , Animals , California , Kelp
3.
Am Nat ; 192(3): 287-300, 2018 09.
Article in English | MEDLINE | ID: mdl-30125236

ABSTRACT

Interspecific variation in resource use is critical to understanding species diversity, coexistence, and ecosystem functioning. A growing body of research describes analogous intraspecific variation and its potential importance for population dynamics and community outcomes. However, the magnitude of intraspecific variation relative to interspecific variation in key dimensions of consumer-resource interactions remains unknown, hampering our understanding of the importance of this variation for population and community processes. In this study, we examine feeding preference through repeated laboratory choice feeding assays of 444 wild-caught individuals of eight invertebrate grazer species on rocky reefs in northern California. Between-species variation accounted for 25%-33% of the total variation in preference for the preferred resource, while between-individual variation accounted for 4%-5% of total variation. For two of the eight species, between-individual variation was significantly different from zero and on average contributed 14% and 17% of the total diet variation, even after accounting for differences due to size and sex. Therefore, even with clearly distinguishable between-species differences in mean preference, diet variation between and within individuals can contribute to the dietary niche width of species and guilds, which may be overlooked by focusing solely on species' mean resource use patterns.


Subject(s)
Ecosystem , Food Preferences , Invertebrates , Animals , California , Diet , Laminaria , Rhodophyta
SELECTION OF CITATIONS
SEARCH DETAIL
...