Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 36
Filter
Add more filters










Publication year range
1.
PLoS One ; 17(12): e0277532, 2022.
Article in English | MEDLINE | ID: mdl-36454869

ABSTRACT

There are currently no preventive or disease-modifying therapies for Parkinson's Disease (PD). Failures in clinical trials necessitate a re-evaluation of existing pre-clinical models in order to adopt systems that better recapitulate underlying disease mechanisms and better predict clinical outcomes. In recent years, models utilizing patient-derived induced pluripotent stem cells (iPSC) have emerged as attractive models to recapitulate disease-relevant neuropathology in vitro without exogenous overexpression of disease-related pathologic proteins. Here, we utilized iPSC derived from patients with early-onset PD and dementia phenotypes that harbored either a point mutation (A53T) or multiplication at the α-synuclein/SNCA gene locus. We generated a three-dimensional (3D) cortical neurosphere culture model to better mimic the tissue microenvironment of the brain. We extensively characterized the differentiation process using quantitative PCR, Western immunoblotting and immunofluorescence staining. Differentiated and aged neurospheres revealed alterations in fatty acid profiles and elevated total and pathogenic phospho-α-synuclein levels in both A53T and the triplication lines compared to their isogenic control lines. Furthermore, treatment of the neurospheres with a small molecule inhibitor of stearoyl CoA desaturase (SCD) attenuated the protein accumulation and aberrant fatty acid profile phenotypes. Our findings suggest that the 3D cortical neurosphere model is a useful tool to interrogate targets for PD and amenable to test small molecule therapeutics.


Subject(s)
Induced Pluripotent Stem Cells , Parkinson Disease , Humans , alpha-Synuclein/genetics , Parkinson Disease/genetics , Organoids , Fatty Acids
3.
Neurotherapeutics ; 19(3): 1018-1036, 2022 04.
Article in English | MEDLINE | ID: mdl-35445353

ABSTRACT

Increasing evidence has shown that Parkinson's disease (PD) impairs midbrain dopaminergic, cortical and other neuronal subtypes in large part due to the build-up of lipid- and vesicle-rich α-synuclein (αSyn) cytotoxic inclusions. We previously identified stearoyl-CoA desaturase (SCD) as a potential therapeutic target for synucleinopathies. A brain-penetrant SCD inhibitor, YTX-7739, was developed and has entered Phase 1 clinical trials. Here, we report the efficacy of YTX-7739 in reversing pathological αSyn phenotypes in various in vitro and in vivo PD models. In cell-based assays, YTX-7739 decreased αSyn-mediated neuronal death, reversed the abnormal membrane interaction of amplified E46K ("3K") αSyn, and prevented pathological phenotypes in A53T and αSyn triplication patient-derived neurospheres, including dysregulated fatty acid profiles and pS129 αSyn accumulation. In 3K PD-like mice, YTX-7739 crossed the blood-brain barrier, decreased unsaturated fatty acids, and prevented progressive motor deficits. Both YTX-7739 treatment and decreasing SCD activity through deletion of one copy of the SCD1 gene (SKO) restored the physiological αSyn tetramer-to-monomer ratio, dopaminergic integrity, and neuronal survival in 3K αSyn mice. YTX-7739 efficiently reduced pS129 + and PK-resistant αSyn in both human wild-type αSyn and 3K mutant mice similar to the level of 3K-SKO. Together, these data provide further validation of SCD as a PD therapeutic target and YTX-7739 as a clinical candidate for treating human α-synucleinopathies.


Subject(s)
Parkinson Disease , alpha-Synuclein , Animals , Brain/metabolism , Humans , Mice , Neurons/metabolism , Parkinson Disease/genetics , Stearoyl-CoA Desaturase/genetics , Stearoyl-CoA Desaturase/metabolism , alpha-Synuclein/genetics , alpha-Synuclein/metabolism
4.
Mol Neurobiol ; 59(4): 2171-2189, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35060064

ABSTRACT

Stearoyl-CoA desaturase (SCD) is a potential therapeutic target for Parkinson's and related neurodegenerative diseases. SCD inhibition ameliorates neuronal toxicity caused by aberrant α-synuclein, a lipid-binding protein implicated in Parkinson's disease. Its inhibition depletes monounsaturated fatty acids, which may modulate α-synuclein conformations and membrane interactions. Herein, we characterize the pharmacokinetic and pharmacodynamic properties of YTX-7739, a clinical-stage SCD inhibitor. Administration of YTX-7739 to rats and monkeys for 15 days caused a dose-dependent increase in YTX-7739 concentrations that were well-tolerated and associated with concentration-dependent reductions in the fatty acid desaturation index (FADI), the ratio of monounsaturated to saturated fatty acids. An approximate 50% maximal reduction in the carbon-16 desaturation index was observed in the brain, with comparable responses in the plasma and skin. A study with a diet supplemented in SCD products indicates that changes in brain C16 desaturation were due to local SCD inhibition, rather than to changes in systemic fatty acids that reach the brain. Assessment of pharmacodynamic response onset and reversibility kinetics indicated that approximately 7 days of dosing were required to achieve maximal responses, which persisted for at least 2 days after cessation of dosing. YTX-7739 thus achieved sufficient concentrations in the brain to inhibit SCD and produce pharmacodynamic responses that were well-tolerated in rats and monkeys. These results provide a framework for evaluating YTX-7739 pharmacology clinically as a disease-modifying therapy to treat synucleinopathies.


Subject(s)
Parkinson Disease , Stearoyl-CoA Desaturase , Animals , Fatty Acids/metabolism , Fatty Acids/pharmacology , Lipid Metabolism/physiology , Rats , Stearoyl-CoA Desaturase/metabolism , alpha-Synuclein/metabolism
5.
Cell Rep ; 25(10): 2742-2754.e31, 2018 12 04.
Article in English | MEDLINE | ID: mdl-30517862

ABSTRACT

The lack of disease-modifying treatments for neurodegenerative disease stems in part from our rudimentary understanding of disease mechanisms and the paucity of targets for therapeutic intervention. Here we used an integrated discovery paradigm to identify a new therapeutic target for diseases caused by α-synuclein (α-syn), a small lipid-binding protein that misfolds and aggregates in Parkinson's disease and other disorders. Using unbiased phenotypic screening, we identified a series of compounds that were cytoprotective against α-syn-mediated toxicity by inhibiting the highly conserved enzyme stearoyl-CoA desaturase (SCD). Critically, reducing the levels of unsaturated membrane lipids by inhibiting SCD reduced α-syn toxicity in human induced pluripotent stem cell (iPSC) neuronal models. Taken together, these findings suggest that inhibition of fatty acid desaturation has potential as a therapeutic approach for the treatment of Parkinson's disease and other synucleinopathies.


Subject(s)
Stearoyl-CoA Desaturase/antagonists & inhibitors , alpha-Synuclein/toxicity , Animals , Cytoprotection/drug effects , Fatty Acids/metabolism , Humans , Lipid Metabolism/drug effects , Neurons/drug effects , Neurons/metabolism , Oxadiazoles/chemistry , Oxadiazoles/pharmacology , Protein Aggregates , Rats , Saccharomyces cerevisiae/drug effects , Stearoyl-CoA Desaturase/metabolism , Triglycerides/metabolism
6.
Sci Rep ; 8(1): 13438, 2018 09 07.
Article in English | MEDLINE | ID: mdl-30194389

ABSTRACT

Protein interacting with C kinase (PICK1) is a scaffolding protein that is present in dendritic spines and interacts with a wide array of proteins through its PDZ domain. The best understood function of PICK1 is regulation of trafficking of AMPA receptors at neuronal synapses via its specific interaction with the AMPA GluA2 subunit. Disrupting the PICK1-GluA2 interaction has been shown to alter synaptic plasticity, a molecular mechanism of learning and memory. Lack of potent, selective inhibitors of the PICK1 PDZ domain has hindered efforts at exploring the PICK1-GluA2 interaction as a therapeutic target for neurological diseases. Here, we report the discovery of PICK1 small molecule inhibitors using a structure-based drug design strategy. The inhibitors stabilized surface GluA2, reduced Aß-induced rise in intracellular calcium concentrations in cultured neurons, and blocked long term depression in brain slices. These findings demonstrate that it is possible to identify potent, selective PICK1-GluA2 inhibitors which may prove useful for treatment of neurodegenerative disorders.


Subject(s)
Amyloid beta-Peptides/metabolism , Brain/metabolism , Carrier Proteins/antagonists & inhibitors , Dendritic Spines/metabolism , Neurodegenerative Diseases/metabolism , Nuclear Proteins/antagonists & inhibitors , Synapses/metabolism , Animals , Brain/pathology , Calcium/metabolism , Calcium Signaling , Carrier Proteins/metabolism , Cell Cycle Proteins , Dendritic Spines/pathology , Drug Design , Mice , Neurodegenerative Diseases/drug therapy , Neurodegenerative Diseases/pathology , Nuclear Proteins/metabolism , PDZ Domains , Receptors, AMPA/metabolism , Synapses/pathology
7.
J Biol Chem ; 292(43): 17963-17974, 2017 10 27.
Article in English | MEDLINE | ID: mdl-28860188

ABSTRACT

Aberrant activation of matrix metalloproteinases (MMPs) is a common feature of pathological cascades observed in diverse disorders, such as cancer, fibrosis, immune dysregulation, and neurodegenerative diseases. MMP-9, in particular, is highly dynamically regulated in several pathological processes. Development of MMP inhibitors has therefore been an attractive strategy for therapeutic intervention. However, a long history of failed clinical trials has demonstrated that broad-spectrum MMP inhibitors have limited clinical utility, which has spurred the development of inhibitors selective for individual MMPs. Attaining selectivity has been technically challenging because of sequence and structural conservation across the various MMPs. Here, through a biochemical and structural screening paradigm, we have identified JNJ0966, a highly selective compound that inhibited activation of MMP-9 zymogen and subsequent generation of catalytically active enzyme. JNJ0966 had no effect on MMP-1, MMP-2, MMP-3, MMP-9, or MMP-14 catalytic activity and did not inhibit activation of the highly related MMP-2 zymogen. The molecular basis for this activity was characterized as an interaction of JNJ0966 with a structural pocket in proximity to the MMP-9 zymogen cleavage site near Arg-106, which is distinct from the catalytic domain. JNJ0966 was efficacious in reducing disease severity in a mouse experimental autoimmune encephalomyelitis model, demonstrating the viability of this therapeutic approach. This discovery reveals an unprecedented pharmacological approach to MMP inhibition, providing an opportunity to improve selectivity of future clinical drug candidates. Targeting zymogen activation in this manner may also allow for pharmaceutical exploration of other enzymes previously viewed as intractable drug targets.


Subject(s)
Enzyme Precursors/antagonists & inhibitors , Enzyme Precursors/chemistry , Matrix Metalloproteinase 9/chemistry , Matrix Metalloproteinase Inhibitors/chemistry , Allosteric Regulation , Animals , COS Cells , Catalytic Domain , Chlorocebus aethiops , Enzyme Precursors/genetics , Enzyme Precursors/metabolism , Humans , Matrix Metalloproteinase 9/genetics , Matrix Metalloproteinase 9/metabolism , Protein Domains
8.
Antioxid Redox Signal ; 24(18): 1058-71, 2016 06 20.
Article in English | MEDLINE | ID: mdl-26980071

ABSTRACT

AIMS: Gastro-resistant dimethyl fumarate (DMF) is an oral therapeutic indicated for the treatment of relapsing multiple sclerosis. Recent data suggest that a primary pharmacodynamic response to DMF treatment is activation of the nuclear factor (erythroid-derived 2)-like 2 (NRF2) pathway; however, the gene targets modulated downstream of NRF2 that contribute to DMF-dependent effects are poorly understood. RESULTS: Using wild-type and NRF2 knockout mice, we characterized DMF transcriptional responses throughout the brain and periphery to understand DMF effects in vivo and to explore the necessity of NRF2 in this process. Our findings identified tissue-specific expression of NRF2 target genes as well as NRF2-dependent and -independent gene regulation after DMF administration. Furthermore, using gene ontology, we identified common biological pathways that may be regulated by DMF and contribute to in vivo functional effects. INNOVATION: Together, these data suggest that DMF modulates transcription through multiple pathways, which has implications for the cytoprotective, immunomodulatory, and clinical properties of DMF. CONCLUSION: These findings provide further understanding of the DMF mechanism of action and propose potential therapeutic targets that warrant further investigation for treating neurodegenerative diseases. Antioxid. Redox Signal. 24, 1058-1071.


Subject(s)
Anti-Inflammatory Agents/pharmacokinetics , Dimethyl Fumarate/pharmacokinetics , NF-E2-Related Factor 2/metabolism , Administration, Oral , Animals , Anti-Inflammatory Agents/administration & dosage , Brain/drug effects , Brain/metabolism , Dimethyl Fumarate/administration & dosage , Dose-Response Relationship, Drug , Drug Evaluation, Preclinical , Gene Expression Regulation/drug effects , Male , Mice, Inbred C57BL , Mice, Knockout , Organ Specificity , Tissue Distribution , Transcriptome/drug effects
9.
Neuropharmacology ; 103: 57-68, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26690893

ABSTRACT

Reducing the production of larger aggregation-prone amyloid ß-peptides (Aß) remains an untested therapeutic approach for reducing the appearance and growth of Aß plaques in the brain, which are a hallmark pathological feature of Alzheimer's disease. γ-Secretase modulators (GSMs) are therapeutics that impact γ-secretase-dependent cleavage of amyloid precursor protein to promote the production of shorter Aß peptides that are less prone to aggregation and plaque deposition. This is accomplished without inhibiting overall γ-secretase function and cleavage of other substrates, which is believed to be a source of deleterious side effects. Here, we report the pharmacokinetic and pharmacodynamic properties of BIIB042, a novel bioavailable and brain-penetrant GSM. In cell-based assays, BIIB042 reduced the levels of Aß42, increased the levels of Aß38 and had little effect on the levels of Aß40, the most abundant Aß species. Similar pharmacodynamic properties were confirmed in the central nervous system and in plasma of mice and rats, and also in plasma of cynomolgus monkeys after a single oral dose of BIIB042. BIIB042 reduced Aß42 levels and Aß plaque burden in Tg2576 mice, which overexpress human amyloid precursor protein and serve as a model system for Alzheimer's disease. BIIB042 did not inhibit cleavage of other γ-secretase substrates in cell-based and in vivo signaling and cleavage assays. The pharmacodynamic effects of lowering Aß42 in the central nervous system coupled with demonstrated efficacy in reducing plaque pathology suggests modulation of γ-secretase, with molecules like BIIB042, is a compelling therapeutic approach for the treatment of Alzheimer's disease.


Subject(s)
Aldehydes/pharmacokinetics , Alzheimer Disease/drug therapy , Alzheimer Disease/enzymology , Amyloid Precursor Protein Secretases/metabolism , Amyloid beta-Peptides/metabolism , Brain/drug effects , Brain/enzymology , Aldehydes/administration & dosage , Amyloid beta-Peptides/blood , Animals , Disease Models, Animal , Dose-Response Relationship, Drug , Macaca fascicularis , Male , Mice , Plaque, Amyloid/metabolism , Protein Isoforms/blood , Rats , Rats, Inbred F344
10.
PLoS One ; 10(3): e0120254, 2015.
Article in English | MEDLINE | ID: mdl-25793262

ABSTRACT

Delayed-release dimethyl fumarate (also known as gastro-resistant dimethyl fumarate), an oral therapeutic containing dimethyl fumarate (DMF) as the active ingredient, is currently approved for the treatment of relapsing multiple sclerosis. DMF is also a component in a distinct mixture product with 3 different salts of monoethyl fumarate (MEF), which is marketed for the treatment of psoriasis. Previous studies have provided insight into the pharmacologic properties of DMF, including modulation of kelch-like ECH-associated protein 1 (KEAP1), activation of the nuclear factor (erythroid-derived 2)-like 2 (NRF2) pathway, and glutathione (GSH) modulation; however, those of MEF remain largely unexplored. Therefore, the aim of this study was to evaluate the in vitro effects of DMF and MEF on KEAP1 modification, activation of the NRF2 pathway, and GSH conjugation. Using mass spectrometry, DMF treatment resulted in a robust modification of specific cysteine residues on KEAP1. In comparison, the overall degree of KEAP1 modification following MEF treatment was significantly less or undetectable. Consistent with KEAP1 cysteine modification, DMF treatment resulted in nuclear translocation of NRF2 and a robust transcriptional response in treated cells, as did MEF; however, the responses to MEF were of a lower magnitude or distinct compared to DMF. DMF was also shown to produce an acute concentration-dependent depletion of GSH; however, GSH levels eventually recovered and rose above baseline by 24 hours. In contrast, MEF did not cause acute reductions in GSH, but did produce an increase by 24 hours. Overall, these studies demonstrate that DMF and MEF are both pharmacologically active, but have differing degrees of activity as well as unique actions. These differences would be expected to result in divergent effects on downstream biology.


Subject(s)
Dimethyl Fumarate/pharmacology , Fumarates/pharmacology , Glutathione/metabolism , Intracellular Signaling Peptides and Proteins/metabolism , NF-E2-Related Factor 2/metabolism , Astrocytes/drug effects , Astrocytes/metabolism , Cell Nucleus/drug effects , Cell Nucleus/metabolism , Cysteine/metabolism , Dimethyl Fumarate/chemistry , Extracellular Space/metabolism , Fumarates/chemistry , Gene Expression Regulation/drug effects , HEK293 Cells , Humans , Intracellular Signaling Peptides and Proteins/genetics , Kelch-Like ECH-Associated Protein 1 , NF-E2-Related Factor 2/genetics , Protein Transport/drug effects
11.
Eur J Neurosci ; 39(7): 1225-33, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24713001

ABSTRACT

Amyloid beta (Aß), a key component in the pathophysiology of Alzheimer's disease, is thought to target excitatory synapses early in the disease. However, the mechanism by which Aß weakens synapses is not well understood. Here we showed that the PDZ domain protein, protein interacting with C kinase 1 (PICK1), was required for Aß to weaken synapses. In mice lacking PICK1, elevations of Aß failed to depress synaptic transmission in cultured brain slices. In dissociated cultured neurons, Aß failed to reduce surface α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor subunit 2, a subunit of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors that binds with PICK1 through a PDZ ligand-domain interaction. Lastly, a novel small molecule (BIO922) discovered through structure-based drug design that targets the specific interactions between GluA2 and PICK1 blocked the effects of Aß on synapses and surface receptors. We concluded that GluA2-PICK1 interactions are a key component of the effects of Aß on synapses.


Subject(s)
Amyloid beta-Peptides/toxicity , Carrier Proteins/metabolism , Excitatory Postsynaptic Potentials , Nuclear Proteins/metabolism , Peptide Fragments/toxicity , Synapses/metabolism , Animals , Carrier Proteins/genetics , Cell Cycle Proteins , Cells, Cultured , Hippocampus/cytology , Hippocampus/metabolism , Hippocampus/physiology , Mice , Neurons/drug effects , Neurons/metabolism , Neurons/physiology , Nuclear Proteins/genetics , Protein Binding , Rats , Receptors, AMPA/metabolism , Synapses/drug effects , Synapses/physiology
12.
J Pharmacol Exp Ther ; 341(1): 274-84, 2012 Apr.
Article in English | MEDLINE | ID: mdl-22267202

ABSTRACT

Oxidative stress is central to the pathology of several neurodegenerative diseases, including multiple sclerosis, and therapeutics designed to enhance antioxidant potential could have clinical value. The objective of this study was to characterize the potential direct neuroprotective effects of dimethyl fumarate (DMF) and its primary metabolite monomethyl fumarate (MMF) on cellular resistance to oxidative damage in primary cultures of central nervous system (CNS) cells and further explore the dependence and function of the nuclear factor (erythroid-derived 2)-like 2 (Nrf2) pathway in this process. Treatment of animals or primary cultures of CNS cells with DMF or MMF resulted in increased nuclear levels of active Nrf2, with subsequent up-regulation of canonical antioxidant target genes. DMF-dependent up-regulation of antioxidant genes in vivo was lost in mice lacking Nrf2 [Nrf2(-/-)]. DMF or MMF treatment increased cellular redox potential, glutathione, ATP levels, and mitochondrial membrane potential in a concentration-dependent manner. Treating astrocytes or neurons with DMF or MMF also significantly improved cell viability after toxic oxidative challenge in a concentration-dependent manner. This effect on viability was lost in cells that had eliminated or reduced Nrf2. These data suggest that DMF and MMF are cytoprotective for neurons and astrocytes against oxidative stress-induced cellular injury and loss, potentially via up-regulation of an Nrf2-dependent antioxidant response. These data also suggest DMF and MMF may function through improving mitochondrial function. The clinical utility of DMF in multiple sclerosis is being explored through phase III trials with BG-12, which is an oral therapeutic containing DMF as the active ingredient.


Subject(s)
Central Nervous System/cytology , Central Nervous System/metabolism , Cytoprotection/genetics , Fumarates/pharmacology , NF-E2-Related Factor 2/physiology , Neurons/metabolism , Oxidative Stress/genetics , Signal Transduction/genetics , Animals , Cells, Cultured , Central Nervous System/drug effects , Cytoprotection/drug effects , Humans , Mice , Mice, Inbred C57BL , Mice, Knockout , NF-E2-Related Factor 2/deficiency , Neurons/drug effects , Neuroprotective Agents/pharmacology , Oxidative Stress/drug effects , Signal Transduction/drug effects
13.
Bioorg Med Chem Lett ; 21(24): 7277-80, 2011 Dec 15.
Article in English | MEDLINE | ID: mdl-22061640

ABSTRACT

Starting from literature examples of nonsteroidal anti-inflammatory drugs (NSAIDs)-type carboxylic acid γ-secretase modulators (GSMs) and using a scaffold design approach, we identified 4-aminomethylphenylacetic acid 4 with a desirable γ-secretase modulation profile. Scaffold optimization led to the discovery of a novel chemical series, represented by 6b, having improved brain penetration. Further SAR studies provided analog 6q that exhibited a good pharmacological profile. Oral administration of 6q significantly reduced brain Aß42 levels in mice and rats.


Subject(s)
Amyloid Precursor Protein Secretases/antagonists & inhibitors , Anti-Inflammatory Agents, Non-Steroidal/chemistry , Enzyme Inhibitors/chemistry , Phenylacetates/chemistry , Piperidines/chemistry , Administration, Oral , Amyloid Precursor Protein Secretases/metabolism , Amyloid beta-Peptides/metabolism , Animals , Anti-Inflammatory Agents, Non-Steroidal/chemical synthesis , Anti-Inflammatory Agents, Non-Steroidal/pharmacokinetics , Brain/metabolism , Drug Design , Drug Evaluation, Preclinical , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/pharmacokinetics , Mice , Peptide Fragments/metabolism , Phenylacetates/chemical synthesis , Phenylacetates/pharmacokinetics , Piperidines/chemical synthesis , Piperidines/pharmacokinetics , Rats
14.
Bioorg Med Chem Lett ; 21(21): 6485-90, 2011 Nov 01.
Article in English | MEDLINE | ID: mdl-21925881

ABSTRACT

The discovery of potent N-hydroxyl caprolactam matrix metalloproteinase (MMP) inhibitors (6) based on the natural product Cobactin-T (2) is described. The synthetic method, which utilizes the ring closing metathesis reaction, is compatible to provide complementary (R) and (S) enantiomers. These compounds tested against MMP-2 and 9, show that the R stereochemistry (i.e., 16), which is opposite for that found in the natural product Cobactin-T is >1000-fold more active with IC(50) values of 0.2-0.6nM against both enzymes. The variation in the incorporation of the sulfonamide enzyme recognition element (Ar(2)XAr(1)SO(2)N(R(1)), 6), along with alterations in the RCM/double bond chemistry (R(2)) provided a series of sub nanomolar MMP inhibitors. For example, compounds 16 and 34 were found to be the most potent with IC(50) values against MMP-2 and MMP-9 found to be between 0.2 and 0.6nM with 34 being the most potent compound discovered (MMP-2 IC(50)=0.39nM and MMP-9 IC(50)=0.22nM). Compounds 16 and 34 showed acceptable drug-like properties in vivo with compound 34 showing oral bioavailability.


Subject(s)
Azepines/pharmacology , Matrix Metalloproteinase Inhibitors , Protease Inhibitors/pharmacology , Azepines/pharmacokinetics , Biological Availability , Cyclization , Drug Discovery , Inhibitory Concentration 50 , Protease Inhibitors/pharmacokinetics , Stereoisomerism
15.
ACS Med Chem Lett ; 2(10): 786-91, 2011 Oct 13.
Article in English | MEDLINE | ID: mdl-24900267

ABSTRACT

We have investigated a novel series of acid-derived γ-secretase modulators as a potential treatment of Alzheimer's disease. Optimization based on cellular potency and brain pharmacodynamics after oral dosing led to the discovery of 10a (BIIB042). Compound 10a is a potent γ-secretase modulator, which lowered Aß42, increased Aß38, but had little to no effect on Aß40 levels both in vitro and in vivo. In addition, compound 10a did not affect Notch signaling in our in vitro assessment. Compound 10a demonstrated excellent pharmacokinetic parameters in multiple species. Oral administration of 10a significantly reduced brain Aß42 levels in CF-1 mice and Fischer rats, as well as plasma Aß42 levels in cynomolgus monkeys. Compound 10a was selected as a candidate for preclinical safety evaluation.

16.
Stroke ; 39(12): 3372-7, 2008 Dec.
Article in English | MEDLINE | ID: mdl-18927459

ABSTRACT

BACKGROUND AND PURPOSE: Thrombolysis with tPA is the only FDA-approved therapy for acute ischemic stroke. But its widespread application remains limited by narrow treatment time windows and the related risks of cerebral hemorrhage. In this study, we ask whether minocycline can prevent tPA-associated cerebral hemorrhage and extend the reperfusion window in an experimental stroke model in rats. METHODS: Spontaneously hypertensive rats were subjected to embolic focal ischemia using homologous clots and treated with: saline at 1 hour; early tPA at 1 hour, delayed tPA at 6 hours; minocycline at 4 hours; combined minocycline at 4 hours plus tPA at 6 hours. Infarct volumes and hemorrhagic transformation were quantified at 24 hours. Gelatin zymography was used to measure blood levels of circulating matrix metalloproteinase-9 (MMP-9). RESULTS: Early 1-hour thrombolysis restored perfusion and reduced infarction. Late 6-hour tPA did not decrease infarction but instead worsened hemorrhagic conversion. Combining minocycline with delayed 6-hour tPA decreased plasma MMP-9 levels, reduced infarction, and ameliorated brain hemorrhage. Blood levels of MMP-9 were also significantly correlated with volumes of infarction and hemorrhage. CONCLUSIONS: Combination therapy with minocycline may extend tPA treatment time windows in ischemic stroke.


Subject(s)
Brain Ischemia/drug therapy , Fibrinolytic Agents/therapeutic use , Intracranial Embolism/drug therapy , Matrix Metalloproteinase Inhibitors , Minocycline/therapeutic use , Neuroprotective Agents/therapeutic use , Thrombolytic Therapy/methods , Tissue Plasminogen Activator/therapeutic use , Animals , Biomarkers , Blood-Brain Barrier/drug effects , Brain Ischemia/blood , Brain Ischemia/enzymology , Brain Ischemia/etiology , Cerebral Hemorrhage/blood , Cerebral Hemorrhage/chemically induced , Cerebral Hemorrhage/enzymology , Cerebral Hemorrhage/prevention & control , Cerebral Infarction/blood , Cerebral Infarction/enzymology , Cerebral Infarction/etiology , Cerebral Infarction/prevention & control , Drug Administration Schedule , Drug Evaluation, Preclinical , Fibrinolytic Agents/administration & dosage , Fibrinolytic Agents/adverse effects , Intracranial Embolism/blood , Intracranial Embolism/complications , Intracranial Embolism/enzymology , Male , Matrix Metalloproteinase 9/blood , Minocycline/administration & dosage , Neuroprotective Agents/administration & dosage , Rats , Rats, Inbred SHR , Recombinant Proteins/administration & dosage , Recombinant Proteins/adverse effects , Recombinant Proteins/therapeutic use , Reperfusion , Thrombolytic Therapy/adverse effects , Time Factors , Tissue Plasminogen Activator/administration & dosage , Tissue Plasminogen Activator/adverse effects
18.
Bioorg Med Chem Lett ; 18(3): 1135-9, 2008 Feb 01.
Article in English | MEDLINE | ID: mdl-18086526

ABSTRACT

A new series of beta-N-biaryl ether sulfonamide hydroxamates as novel gelatinase inhibitors is described. These compounds exhibit good potency for MMP-2 and MMP-9 without inhibiting MMP-1. The structure-activity relationships (SAR) reveal the biaryl ether type P1' moiety together with methanesulfonamide is the optimal combination that provides inhibitory activity of MMP-9 in the single-digit nanomolar range.


Subject(s)
Gelatinases/antagonists & inhibitors , Hydroxamic Acids/chemical synthesis , Hydroxamic Acids/pharmacology , Matrix Metalloproteinase Inhibitors , Pyrazines/chemical synthesis , Pyrazines/pharmacology , Animals , Drug Design , Humans , Hydroxamic Acids/chemistry , Microsomes, Liver/drug effects , Molecular Structure , Pyrazines/chemistry , Rats , Structure-Activity Relationship , Sulfonamides/chemical synthesis , Sulfonamides/chemistry , Sulfonamides/pharmacology
19.
Bioorg Med Chem Lett ; 18(3): 1140-5, 2008 Feb 01.
Article in English | MEDLINE | ID: mdl-18083558

ABSTRACT

The introduction and the optimization of an alpha-amino substituent based on a series of alpha-hydroxy-beta-N-biaryl ether sulfonamide hydroxamates is described. The modification leads to a new series of MMP-2/MMP-9 inhibitors with enhanced inhibitory activities and improved ADME properties. An efficacy study on reducing the ischemia-induced brain edema in the rat transient middle cerebral artery occlusion (tMCAo) model is also demonstrated.


Subject(s)
Amino Acids/chemistry , Gelatinases/antagonists & inhibitors , Hydroxamic Acids/chemical synthesis , Hydroxamic Acids/pharmacology , Matrix Metalloproteinase Inhibitors , Pyrazines/chemical synthesis , Pyrazines/pharmacology , Animals , Brain Edema/chemically induced , Disease Models, Animal , Drug Design , Humans , Hydroxamic Acids/chemistry , Microsomes, Liver/drug effects , Middle Cerebral Artery/drug effects , Molecular Structure , Pyrazines/chemistry , Rats , Stereoisomerism , Structure-Activity Relationship , Sulfonamides/chemical synthesis , Sulfonamides/chemistry , Sulfonamides/pharmacology
20.
Bioorg Med Chem Lett ; 18(1): 409-13, 2008 Jan 01.
Article in English | MEDLINE | ID: mdl-17981034

ABSTRACT

Matrix metalloproteinase-9 (MMP-9) has been implicated in the breakdown of the blood-brain barrier during cerebral ischemia. As a result, inhibition of MMP-9 may have utility as a therapeutic intervention in stroke. Towards this end, we have synthesized a series of 1-hydroxy-2-pyridinones that have excellent in vitro potency in inhibiting MMP-9 in addition to MMP-2. Representative compounds also demonstrate good efficacy in the mouse transient mid-cerebral artery occlusion (tMCAO) model of cerebral ischemia.


Subject(s)
Brain Ischemia/drug therapy , Matrix Metalloproteinase Inhibitors , Protease Inhibitors/chemical synthesis , Pyridones/chemical synthesis , Pyridones/pharmacology , Administration, Oral , Animals , Biological Availability , Disease Models, Animal , Inhibitory Concentration 50 , Male , Mice , Mice, Inbred C57BL , Models, Molecular , Protease Inhibitors/chemistry , Protease Inhibitors/pharmacokinetics , Protease Inhibitors/pharmacology , Pyridones/chemistry , Pyridones/pharmacokinetics , Structure-Activity Relationship , Sulfonamides/chemical synthesis , Sulfonamides/chemistry , Sulfonamides/pharmacokinetics , Sulfonamides/pharmacology , Zinc/chemistry , Zinc/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...