Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Rev Sci Instrum ; 91(5): 053301, 2020 May 01.
Article in English | MEDLINE | ID: mdl-32486736

ABSTRACT

This work describes the new facility for applied nuclear physics at the University of Sao Paulo, mainly for irradiation of electronic devices. It is a setup composed of a quadrupole doublet for beam focusing/defocusing plus multiple scattering through gold foils to produce low intensity, large-area, and high-uniformity heavy-ion beams from 1H to 107Ag. Beam intensities can be easily adjusted from 102 particles cm2/s to hundreds of nA for an area as large as 2.0 cm2 and uniformity better than 90%. Its irradiation chamber has a high-precision motorized stage, and the system is controlled by a LabViewTM environment, allowing measurement automation. Design considerations and examples of use are presented.

2.
Rev Sci Instrum ; 85(7): 073501, 2014 Jul.
Article in English | MEDLINE | ID: mdl-25085134

ABSTRACT

The Isomeric State Measurement System (SISMEI) was developed to search for isomeric nuclear states produced by fusion-evaporation reactions. The SISMEI consists of 10 plastic phoswich telescopes, two lead shields, one NaI(Tl) scintillation detector, two Compton suppressed HPGe γ-ray detectors, and a cone with a recoil product catcher. The new system was tested at the 8 UD Pelletron tandem accelerator of the University of São Paulo with the measurement of two known isomeric states: (54)Fe, 10(+) state (E = 6527.1 (11) keV, T(1/2) = 364(7) ns) and the 5/2(+) state of (19)F (E = 197.143 (4) keV, T(1/2) = 89.3 (10) ns). The results indicate that the system is capable of identifying delayed transitions, of measuring isomeric state lifetimes, and of identifying the feeding transitions of the isomeric state through the delayed γ-γ coincidence method. The measured half-life for the 10(+) state was T(1/2) = 365(14) ns and for the 5/2(+) state, 100(36) ns.

3.
Phys Rev Lett ; 87(12): 122501, 2001 Sep 17.
Article in English | MEDLINE | ID: mdl-11580500

ABSTRACT

Gamma rays from the N = Z-2 nucleus (50)Fe have been observed, establishing the rotational ground state band up to the state J(pi) = 11+ at 6.994 MeV excitation energy. The experimental Coulomb energy differences, obtained by comparison with the isobaric analog states in its mirror (50)Cr, confirm the qualitative interpretation of the backbending patterns in terms of successive alignments of proton and neutron pairs. A quantitative agreement with experiment has been achieved by exact shell model calculations, incorporating the differences in radii along the yrast bands, and properly renormalizing the Coulomb matrix elements in the pf model space.

SELECTION OF CITATIONS
SEARCH DETAIL
...