ABSTRACT
Titanium dioxide (TiO2) is manufactured worldwide as crystalline and amorphous forms for multiple applications, including tissue engineering, but our study proposes analyzing the impact of crystalline phases of TiO2 on Mesenchymal Stem Cells (MSCs). Several studies have already described the regenerative potential of MSCs and TiO2 has been used for bone regeneration. In this study, polydispersity index and sizes of TiO2 nanocrystals (NCs) were determined. Adipose tissue-derived Mesenchymal Stem Cells (AT-MSCs) were isolated and characterized in order to evaluate cellular viability and the internalization of nanocrystals (NCs). All of the assays were performed using the TiO2 NCs with 100% anatase (A), 91.6% anatase/9.4% rutile (AR), 64.6% rutile/35.4% anatase (RA), and 84.0% rutile/16% brookite (RB), submitted to several concentrations in 24-h treatments. Cellular localization of TiO2 NCs in the AT-MSCs was resolved by europium-doped NCs. Viability was significantly improved under the predominance of the rutile phase in NCs with localization restricted at the cytoplasm, suggesting that AR and RA NCs are not genotoxic and can be associated with most cellular activities and metabolic pathways, including glycolysis and cell division.
ABSTRACT
Titanium dioxide nanoparticles (TiO2 NPs) are regularly used in sunscreens because of their photoprotective capacity. The advantage of using TiO2 on the nanometer scale is due to its transparency and better UV blocking efficiency. Due to the greater surface area/volume ratio, NPs become more (bio)-reactive giving rise to concerns about their potential toxicity. To evaluate the irritation and corrosion of cosmetics, 3D skin models have been used as an alternative method to animal experimentation. However, it is not known if this model is appropriate to study skin irritation, corrosion and phototoxicity of nanomaterials such as TiO2 NPs. This systematic review (SR) proposed the following question: Can the toxicity of TiO2 nanoparticles be evaluated in a 3D skin model? This SR was conducted according to the Preliminary Report on Systematic Review and Meta-Analysis (PRISMA). The protocol was registered in CAMARADES and the ToxRTool evaluation was performed in order to increase the quality and transparency of this search. In this SR, 7 articles were selected, and it was concluded that the 3D skin model has shown to be promising to evaluate the toxicity of TiO2 NPs. However, most studies have used biological assays that have already been described as interfering with these NPs, demonstrating that misinterpretations can be obtained. This review will focus in the possible efforts that should be done in order to avoid interference of NPs with biological assays applied in 3D in vitro culture.