Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 79
Filter
1.
Nutrients ; 16(7)2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38613099

ABSTRACT

In the aging process, physiological decline occurs, posing a substantial threat to the physical and mental well-being of the elderly and contributing to the onset of age-related diseases. While traditional perspectives considered the maintenance of life as influenced by a myriad of factors, including environmental, genetic, epigenetic, and lifestyle elements such as exercise and diet, the pivotal role of symbiotic microorganisms had been understated. Presently, it is acknowledged that the intestinal microbiota plays a profound role in overall health by signaling to both the central and peripheral nervous systems, as well as other distant organs. Disruption in this bidirectional communication between bacteria and the host results in dysbiosis, fostering the development of various diseases, including neurological disorders, cardiovascular diseases, and cancer. This review aims to delve into the intricate biological mechanisms underpinning dysbiosis associated with aging and the clinical ramifications of such dysregulation. Furthermore, we aspire to explore bioactive compounds endowed with functional properties capable of modulating and restoring balance in this aging-related dysbiotic process through epigenetics alterations.


Subject(s)
Cardiovascular Diseases , Gastrointestinal Microbiome , Aged , Humans , Dysbiosis , Aging , Communication
2.
Int J Mol Sci ; 25(3)2024 Feb 02.
Article in English | MEDLINE | ID: mdl-38339081

ABSTRACT

Obesity, a chronic condition marked by the excessive accumulation of adipose tissue, not only affects individual well-being but also significantly inflates healthcare costs. The physiological excess of fat manifests as triglyceride (TG) deposition within adipose tissue, with white adipose tissue (WAT) expansion via adipocyte hyperplasia being a key adipogenesis mechanism. As efforts intensify to address this global health crisis, understanding the complex interplay of contributing factors becomes critical for effective public health interventions and improved patient outcomes. In this context, gut microbiota-derived metabolites play an important role in orchestrating obesity modulation. Microbial lipopolysaccharides (LPS), secondary bile acids (BA), short-chain fatty acids (SCFAs), and trimethylamine (TMA) are the main intestinal metabolites in dyslipidemic states. Emerging evidence highlights the microbiota's substantial role in influencing host metabolism and subsequent health outcomes, presenting new avenues for therapeutic strategies, including polyphenol-based manipulations of these microbial populations. Among various agents, caffeine emerges as a potent modulator of metabolic pathways, exhibiting anti-inflammatory, antioxidant, and obesity-mitigating properties. Notably, caffeine's anti-adipogenic potential, attributed to the downregulation of key adipogenesis regulators, has been established. Recent findings further indicate that caffeine's influence on obesity may be mediated through alterations in the gut microbiota and its metabolic byproducts. Therefore, the present review summarizes the anti-adipogenic effect of caffeine in modulating obesity through the intestinal microbiota and its metabolites.


Subject(s)
Adipogenesis , Gastrointestinal Microbiome , Humans , Caffeine/pharmacology , Caffeine/therapeutic use , Obesity/drug therapy , Obesity/metabolism , Adipose Tissue/metabolism , Diet, High-Fat
3.
Curr Drug Targets ; 24(8): 688-696, 2023.
Article in English | MEDLINE | ID: mdl-37278033

ABSTRACT

INTRODUCTION: Several studies demonstrated that deferoxamine, an iron chelator, can improve inflammatory alterations in adipose tissue induced by obesity. Obesity alterations in adipose tissue are also associated with tissue remodeling, and deferoxamine has anti-fibrosis action previously described in sites like the skin and liver. METHODS: In this work, we analyzed deferoxamine effects on adipose tissue fibro-inflammation during obesity induced by diet in mice. in vitro approaches with fibroblasts and macrophages were also carried out to elucidate deferoxamine activity. RESULTS: Our results demonstrated that in addition to exerting anti-inflammatory effects, reducing the cytokine production in adipose tissue of obese mice and by human monocyte differentiated in macrophage in vitro, deferoxamine can alter metalloproteinases expression and extracellular matrix production in vivo and in vitro. CONCLUSION: Deferoxamine could be an alternative to control fibro-inflammation in obese adipose tissue, contributing to the metabolic improvements previously described.


Subject(s)
Deferoxamine , Insulin Resistance , Humans , Animals , Mice , Deferoxamine/pharmacology , Deferoxamine/therapeutic use , Deferoxamine/metabolism , Adipose Tissue , Obesity/metabolism , Inflammation/metabolism , Liver/metabolism , Mice, Inbred C57BL
4.
Int J Mol Sci ; 24(6)2023 Mar 14.
Article in English | MEDLINE | ID: mdl-36982583

ABSTRACT

Ageing is a complex process characterized mainly by a decline in the function of cells, tissues, and organs, resulting in an increased risk of mortality. This process involves several changes, described as hallmarks of ageing, which include genomic instability, telomere attrition, epigenetic changes, loss of proteostasis, dysregulated nutrient sensing, mitochondrial dysfunction, cellular senescence, stem cell depletion, and altered intracellular communication. The determining role that environmental factors such as diet and lifestyle play on health, life expectancy, and susceptibility to diseases, including cancer and neurodegenerative diseases, is wellestablished. In view of the growing interest in the beneficial effects of phytochemicals in the prevention of chronic diseases, several studies have been conducted, and they strongly suggest that the intake of dietary polyphenols may bring numerous benefits due to their antioxidant and anti-inflammatory properties, and their intake has been associated with impaired ageing in humans. Polyphenol intake has been shown to be effective in ameliorating several age-related phenotypes, including oxidative stress, inflammatory processes, impaired proteostasis, and cellular senescence, among other features, which contribute to an increased risk of ageing-associated diseases. This review aims to address, in a general way, the main findings described in the literature about the benefits of polyphenols in each of the hallmarks of ageing, as well as the main regulatory mechanisms responsible for the observed antiageing effects.


Subject(s)
Aging , Polyphenols , Humans , Polyphenols/pharmacology , Polyphenols/therapeutic use , Aging/genetics , Cellular Senescence , Oxidative Stress , Life Expectancy
5.
Int J Mol Sci ; 24(4)2023 Feb 14.
Article in English | MEDLINE | ID: mdl-36835248

ABSTRACT

Wound healing is characterized by a systemic and complex process of cellular and molecular activities. Dipotassium Glycyrrhizinate (DPG), a side product derived from glycyrrhizic acid, has several biological effects, such as being antiallergic, antioxidant, antibacterial, antiviral, gastroprotective, antitumoral, and anti-inflammatory. This study aimed to evaluate the anti-inflammatory effect of topical DPG on the healing of cutaneous wounds by secondary intention in an in vivo experimental model. Twenty-four male Wistar rats were used in the experiment, and were randomly divided into six groups of four. Circular excisions were performed and topically treated for 14 days after wound induction. Macroscopic and histopathological analyses were performed. Gene expression was evaluated by real-time qPCR. Our results showed that treatment with DPG caused a decrease in the inflammatory exudate as well as an absence of active hyperemia. Increases in granulation tissue, tissue reepithelization, and total collagen were also observed. Furthermore, DPG treatment reduced the expression of pro-inflammatory cytokines (Tnf-α, Cox-2, Il-8, Irak-2, Nf-kB, and Il-1) while increasing the expression of Il-10, demonstrating anti-inflammatory effects across all three treatment periods. Based on our results, we conclude that DPG attenuates the inflammatory process by promoting skin wound healing through the modulation of distinct mechanisms and signaling pathways, including anti-inflammatory ones. This involves modulation of the expression of pro- and anti-inflammatory cytokine expression; promotion of new granulation tissue; angiogenesis; and tissue re-epithelialization, all of which contribute to tissue remodeling.


Subject(s)
Anti-Inflammatory Agents , Glycyrrhizic Acid , Wound Healing , Animals , Male , Rats , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Cytokines/metabolism , Glycyrrhizic Acid/pharmacology , Glycyrrhizic Acid/therapeutic use , Granulation Tissue/metabolism , Rats, Wistar , Skin/metabolism , Wound Healing/drug effects
6.
World J Gastroenterol ; 28(24): 2689-2704, 2022 Jun 28.
Article in English | MEDLINE | ID: mdl-35979166

ABSTRACT

BACKGROUND: Chronic inflammation due to Helicobacter pylori (H. pylori) infection promotes gastric carcinogenesis. Tumour necrosis factor-α (TNF-α), a key mediator of inflammation, induces cell survival or apoptosis by binding to two receptors (TNFR1 and TNFR2). TNFR1 can induce both survival and apoptosis, while TNFR2 results only in cell survival. The dysregulation of these processes may contribute to carcinogenesis. AIM: To evaluate the effects of TNFR1 and TNFR2 downregulation in AGS cells treated with H. pylori extract on the TNF-α pathway. METHODS: AGS cell lines containing TNFR1 and TNFR2 receptors downregulated by specific shRNAs and nonsilenced AGS cells were treated with H. pylori extract for 6 h. Subsequently, quantitative polymerase chain reaction with TaqMan® assays was used for the relative quantification of the mRNAs (TNFA, TNFR1, TNFR2, TRADD, TRAF2, CFLIP, NFKB1, NFKB2, CASP8, CASP3) and miRNAs (miR-19a, miR-34a, miR-103a, miR-130a, miR-181c) related to the TNF-α signalling pathway. Flow cytometry was employed for cell cycle analysis and apoptosis assays. RESULTS: In nonsilenced AGS cells, H. pylori extract treatment increased the expression of genes involved in cell survival and inhibited both apoptosis (NFKB1, NFKB2 and CFLIP) and the TNFR1 receptor. TNFR1 downregulation significantly decreased the expression of the TRADD and CFLIP genes, although no change was observed in the cellular process or miRNA expression. In contrast, TNFR2 downregulation decreased the expression of the TRADD and TRAF2 genes, which are both important downstream mediators of the TNFR1-mediated pathway, as well as that of the NFKB1 and CFLIP genes, while upregulating the expression of miR-19a and miR-34a. Consequently, a reduction in the number of cells in the G0/G1 phase and an increase in the number of cells in the S phase were observed, as well as the promotion of early apoptosis. CONCLUSION: Our findings mainly highlight the important role of TNFR2 in the TNF-α pathway in gastric cancer, indicating that silencing it can reduce the expression of survival and anti-apoptotic genes.


Subject(s)
MicroRNAs , Stomach Neoplasms , TNF Receptor-Associated Factor 2/metabolism , Apoptosis , Carcinogenesis , Cell Cycle , Down-Regulation , Gene Expression , Humans , Inflammation , MicroRNAs/genetics , Receptors, Tumor Necrosis Factor, Type I/genetics , Receptors, Tumor Necrosis Factor, Type I/metabolism , Receptors, Tumor Necrosis Factor, Type II/genetics , Stomach Neoplasms/genetics , TNF Receptor-Associated Death Domain Protein/metabolism , TNF Receptor-Associated Factor 2/genetics , Tumor Necrosis Factor-alpha/metabolism
7.
Int J Mol Sci ; 23(8)2022 Apr 08.
Article in English | MEDLINE | ID: mdl-35456938

ABSTRACT

Intestinal diseases, such as inflammatory bowel diseases (IBDs) and colorectal cancer (CRC), are a significant source of morbidity and mortality worldwide. Epidemiological data have shown that IBD patients are at an increased risk for the development of CRC. IBD-associated cancer develops against a background of chronic inflammation and oxidative stress, and their products contribute to cancer development and progression. Therefore, the discovery of novel drugs for the treatment of intestinal diseases is urgently needed. Licorice (Glycyrrhiza glabra) has been largely used for thousands of years in traditional Chinese medicine. Licorice and its derived compounds possess antiallergic, antibacterial, antiviral, anti-inflammatory, and antitumor effects. These pharmacological properties aid in the treatment of inflammatory diseases. In this review, we discuss the pharmacological potential of bioactive compounds derived from Licorice and addresses their anti-inflammatory and antioxidant properties. We also discuss how the mechanisms of action in these compounds can influence their effectiveness and lead to therapeutic effects on intestinal disorders.


Subject(s)
Glycyrrhiza , Inflammatory Bowel Diseases , Triterpenes , Anti-Inflammatory Agents/therapeutic use , Humans , Inflammatory Bowel Diseases/drug therapy , Plant Extracts/pharmacology , Triterpenes/pharmacology
8.
Acta Cir Bras ; 37(1): e370105, 2022.
Article in English | MEDLINE | ID: mdl-35293942

ABSTRACT

PURPOSE: To evaluate how the induction of liver damage by ischemia and reperfusion affects the adipose tissue of lean and obese mice. METHODS: Lean and diet-induced obese mice were subjected to liver ischemia (30 min) followed by 6 h of reperfusion. The vascular stromal fraction of visceral adipose tissue was analyzed by cytometry, and gene expression was evaluated by an Array assay and by RT-qPCR. Intestinal permeability was assessed by oral administration of fluorescein isothiocyanate (FITC)-dextran and endotoxemia by serum endotoxin measurements using a limulus amebocyte lysate assay. RESULTS: It was found that, after liver ischemia and reperfusion, there is an infiltration of neutrophils, monocytes, and lymphocytes, as well as an increase in the gene expression that encode cytokines, chemokines and their receptors in the visceral adipose tissue of lean mice. This inflammatory response was associated with the presence of endotoxemia in lean mice. However, these changes were not observed in the visceral adipose tissue of obese mice. CONCLUSIONS: Liver ischemia and reperfusion induce an acute inflammatory response in adipose tissue of lean mice characterized by an intense chemokine induction and leukocyte infiltration; however, inflammatory alterations are already present at baseline in the obese adipose tissue and liver ischemia and reperfusion do not injure further.


Subject(s)
Intra-Abdominal Fat , Reperfusion Injury , Animals , Inflammation , Liver , Mice , Obesity/complications , Obesity/metabolism , Reperfusion Injury/metabolism
9.
Acta cir. bras ; Acta cir. bras;37(1): e370105, 2022. tab, graf
Article in English | LILACS, VETINDEX | ID: biblio-1364250

ABSTRACT

Purpose: To evaluate how the induction of liver damage by ischemia and reperfusion affects the adipose tissue of lean and obese mice. Methods: Lean and diet-induced obese mice were subjected to liver ischemia (30 min) followed by 6 h of reperfusion. The vascular stromal fraction of visceral adipose tissue was analyzed by cytometry, and gene expression was evaluated by an Array assay and by RT-qPCR. Intestinal permeability was assessed by oral administration of fluorescein isothiocyanate (FITC)-dextran and endotoxemia by serum endotoxin measurements using a limulus amebocyte lysate assay. Results: It was found that, after liver ischemia and reperfusion, there is an infiltration of neutrophils, monocytes, and lymphocytes, as well as an increase in the gene expression that encode cytokines, chemokines and their receptors in the visceral adipose tissue of lean mice. This inflammatory response was associated with the presence of endotoxemia in lean mice. However, these changes were not observed in the visceral adipose tissue of obese mice. Conclusions: Liver ischemia and reperfusion induce an acute inflammatory response in adipose tissue of lean mice characterized by an intense chemokine induction and leukocyte infiltration; however, inflammatory alterations are already present at baseline in the obese adipose tissue and liver ischemia and reperfusion do not injure further.


Subject(s)
Animals , Mice , Reperfusion Injury/veterinary , Interleukin-6 , Endotoxins/analysis , Intra-Abdominal Fat/physiopathology , Tumor Necrosis Factor Inhibitors/analysis
10.
Nutrients ; 13(7)2021 Jul 13.
Article in English | MEDLINE | ID: mdl-34371900

ABSTRACT

Excess caloric intake and body fat accumulation lead to obesity, a complex chronic disease that represents a significant public health problem due to the health-related risk factors. There is growing evidence showing that maternal obesity can program the offspring, which influences neonatal phenotype and predispose offspring to metabolic disorders such as obesity. This increased risk may also be epigenetically transmitted across generations. Thus, there is an imperative need to find effective reprogramming approaches in order to resume normal fetal development. Polyphenols are bioactive compounds found in vegetables and fruits that exert its anti-obesity effect through its powerful anti-oxidant and anti-inflammatory activities. Polyphenol supplementation has been proven to counteract the prejudicial effects of maternal obesity programming on progeny. Indeed, some polyphenols can cross the placenta and protect the fetal predisposition against obesity. The present review summarizes the effects of dietary polyphenols on obesity-induced maternal reprogramming as an offspring anti-obesity approach.


Subject(s)
Adipose Tissue/metabolism , Anti-Obesity Agents/administration & dosage , Energy Metabolism , Obesity, Maternal/metabolism , Pediatric Obesity/prevention & control , Polyphenols/administration & dosage , Prenatal Exposure Delayed Effects , Adipose Tissue/physiopathology , Adiposity , Animals , Diet, Healthy , Epigenesis, Genetic , Female , Gene Expression Regulation, Developmental , Humans , Male , Maternal Nutritional Physiological Phenomena , Nutritional Status , Obesity, Maternal/genetics , Obesity, Maternal/physiopathology , Pediatric Obesity/genetics , Pediatric Obesity/metabolism , Pediatric Obesity/physiopathology , Pregnancy , Risk Factors
11.
Histol Histopathol ; 36(6): 663-674, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33755188

ABSTRACT

A tendon is a mechanosensitive tissue that transmits muscle-derived forces to bones. Photobiomodulation (PBM), also known as low-level laser therapy (LLLT), has been used in therapeutic approaches in tendon lesions, but uncertainties regarding its mechanisms of action have prevented its widespread use. We investigated the response of PBM therapy in experimental lesions of the Achilles tendon in rats. Thirty adult male Wistar rats weighing 250 to 300 g were surgically submitted to bilateral partial transverse section of the Achilles tendon. The right tendon was treated with PBM, whereas the left tendon served as a control. On the third postoperative day, the rats were divided into three experimental groups consisting of ten rats each, which were treated with PBM (Konf, Aculas - HB 750), 780 nm and 80 mW for 20 seconds, three times/week for 7, 14 and 28 days. The rats were sacrificed at the end of the therapeutic time period. The Sca-1 was examined by immunohistochemistry and histomorphometry, and COLA1, COLA2 and COLA3 gene expression was examined by qRT-PCR. COLA2 gene expression was higher in PBM treated tendons than in the control group. The histomorphometric analysis coincided with increased number of mesenchymal cells, characterized by Sca-1 expression in the lesion region (p<0.001). PBM effectively interferes in tendon tissue repair after injury by stimulating mesenchymal cell proliferation and the synthesis of collagen type II, which is suggested to provide structural support to the interstitial tissues during the healing process of the Achilles tendon. Further studies are needed to confirm the role of PBM in tendon healing.


Subject(s)
Collagen/metabolism , Low-Level Light Therapy , Tendon Injuries/therapy , Achilles Tendon/injuries , Animals , Disease Models, Animal , Rats , Rats, Wistar , Wound Healing
12.
DNA Repair (Amst) ; 96: 102976, 2020 12.
Article in English | MEDLINE | ID: mdl-33065487

ABSTRACT

Chronic inflammation resulting from Helicobacter pylori (H. pylori) infection, the major risk factor for gastric cancer, results in increased release of reactive oxygen species (ROS), promoting oxidative stress and DNA damage. APE1 endonuclease, a key component of the base excision repair (BER) pathway, is responsible for the repair of damage induced by ROS. However, the APE1 gene and other DNA damage response (DDR) genes are still poorly understood in gastric cancer. Thus, we aimed to investigate whether the silencing of APE1 by shRNA can interfere with the survival of AGS gastric cancer cells after treatment with hydrogen peroxide (H2O2) and/or H. pylori extract (HPE) and its relation with the expression of DDR genes (ATM, ATR, and H2AX) and miRNAs that target DDR genes. In the AGS cells expressing APE1, isolated or combined treatment with H2O2 and HPE promoted a slight increase in the cell proliferation and increased the levels of intracellular ROS and DNA double strand breaks (DSBs) indicated by ©H2AX foci, a reduction in the proportion of cells in the G0/G1 phase and an increase in the initial apoptosis rate. Moreover, upregulation of APE1, ATR, miR-15a, miR-21, miR-24 and miR-421 and downregulation of ATM and H2AX was observed. In silenced AGS cells after treatment with H2O2 alone or combined with HPE, we observed an increase in the cell proliferation rate and the levels of intracellular ROS and DSBs and a reduction in the proportion of cells in S and G2/M phase arrest, leading to late apoptosis. APE1 knockdown also caused a reduction in the expression of ATM and miR-421, while ATR expression was increased. Based on our results, APE1 knockdown may promote changes in cellular processes by increasing genomic instability, leading to G2/M arrest and cell apoptosis, so it may be a promising strategy for controlling tumor progression.


Subject(s)
Apoptosis , DNA Repair , DNA-(Apurinic or Apyrimidinic Site) Lyase/genetics , G2 Phase Cell Cycle Checkpoints , Helicobacter pylori , Hydrogen Peroxide/toxicity , Stomach Neoplasms/physiopathology , Ataxia Telangiectasia Mutated Proteins/genetics , Cell Line, Tumor , Cell Proliferation , DNA Breaks, Double-Stranded , DNA Damage , Gene Expression Regulation, Neoplastic , Gene Knockdown Techniques , Histones , Humans , Hydrogen Peroxide/pharmacology , MicroRNAs/genetics , Oxidative Stress , Reactive Oxygen Species/metabolism , Stomach Neoplasms/metabolism , Stomach Neoplasms/microbiology , Stomach Neoplasms/therapy
13.
Tumour Biol ; 42(5): 1010428320923856, 2020 May.
Article in English | MEDLINE | ID: mdl-32438863

ABSTRACT

The aim of this study was to evaluate the association of single-nucleotide variant n.60G>C (rs2910164) of microRNA (miR)-146a, related to suppressing of BRCA1/2 DNA repair protein, with the risk and survival of colorectal cancer patients, as well as miR-146a and BRCA1/2 levels and miR binding efficiency. The genotypes were identified in 125 colorectal cancer patients and 276 controls using TaqMan polymerase chain reaction assay. The miR-146a and BRCA1/2 levels were assessed by quantitative-polymerase chain reaction protocols. Primary precursor of miR-146a containing G (wild-type) and C (variant) allele were cloned into pcDNA.3.3 vector and co-transfected in HT-29 colorectal cancer cell line. Luciferase reporter assay was performed to assess miR-146a binding to BRCA2 3'-untranslated region in HT-29. The differences between groups were calculated using chi-square or Fisher's exact test, logistic regression, and Mann-Whitney test. The prognostic impact of single-nucleotide variant genotypes on overall survival was evaluated by Kaplan-Meier estimate and Cox regression. The GC or CC genotypes prevalence was similar in patients and controls (50.4% vs 50.7%, p = 0.74). However, patients with tumors in advanced stage with miR-146a GG genotype had 2.41 more chance of dying than GC or CC genotypes. In addition, tumor tissues of patients with GG genotype presented higher miR-146a (p = 0.02) and lower BRCA1 (p = 0.01) and BRCA2 (p < 0.0001) levels when compared to those with GC or CC genotypes. In fact, pcDNA.3.3-miR-146a-G presented increased binding capacity to the 3'-untranslated region of BRCA2 (p = 0.001) compared to pcDNA.3.3-miR-146a-C. In addition, the G allele altered the binding affinity between miR-146a and its BRCA2 3'-untranslated region target (p < 0.001), thus enhancing suppression of BRCA2 expression. Our results suggest that single-nucleotide variant rs2910164 does not influence the colorectal cancer risk in Brazilian patients; however, the GG genotype could act as a factor of worse prognosis in patients with advanced disease due to suppression of BRCA1/2 modulated by miR-146a.


Subject(s)
BRCA1 Protein/genetics , BRCA2 Protein/genetics , Colorectal Neoplasms/genetics , MicroRNAs/genetics , 3' Untranslated Regions/genetics , Adult , Alleles , Brazil/epidemiology , Colorectal Neoplasms/pathology , Female , Gene Expression Regulation, Neoplastic/genetics , Genetic Association Studies , Genetic Predisposition to Disease , Genotype , HT29 Cells , Humans , Kaplan-Meier Estimate , Male , Middle Aged , Neoplasm Staging , Polymorphism, Single Nucleotide/genetics , Prognosis , Protein Binding
14.
Front Microbiol ; 11: 601921, 2020.
Article in English | MEDLINE | ID: mdl-33552015

ABSTRACT

Although originally known as an opportunistic pathogen, Klebsiella pneumoniae has been considered a worldwide health threat nowadays due to the emergence of hypervirulent and antibiotic-resistant strains capable of causing severe infections not only on immunocompromised patients but also on healthy individuals. Fimbriae is an essential virulence factor for K. pneumoniae, especially in urinary tract infections (UTIs), because it allows the pathogen to adhere and invade urothelial cells and to form biofilms on biotic and abiotic surfaces. The importance of fimbriae for K. pneumoniae pathogenicity is highlighted by the large number of fimbrial gene clusters on the bacterium genome, which requires a coordinated and finely adjusted system to control the synthesis of these structures. In this work, we describe KpfR as a new transcriptional repressor of fimbrial expression in K. pneumoniae and discuss its role in the bacterium pathogenicity. K. pneumoniae with disrupted kpfR gene exhibited a hyperfimbriated phenotype with enhanced biofilm formation and greater adhesion to and replication within epithelial host cells. Nonetheless, the mutant strain was attenuated for colonization of the bladder in a murine model of urinary tract infection. These results indicate that KpfR is an important transcriptional repressor that, by negatively controlling the expression of fimbriae, prevents K. pneumoniae from having a hyperfimbriated phenotype and from being recognized and eliminated by the host immune system.

15.
Front Cell Neurosci ; 13: 216, 2019.
Article in English | MEDLINE | ID: mdl-31191251

ABSTRACT

It has been shown that nuclear factor kappa-B (NF-κB) is constitutively activated in glioblastoma (GBM), suggesting that the pathway could be a therapeutic target. Glycyrrhetic acid (GA), a compound isolated from licorice (Glycyrrhiza glabra), has been shown to decrease cell viability and increases apoptosis in human cancer cell lines by NF-κB signaling pathway suppression. Dipotassium glycyrrhizinate (DPG), a dipotassium salt of GA, has anti-inflammatory properties without toxicity. The current study examined the effectiveness of DPG as an anti-tumor in U87MG and T98G GBM cell lines. Additionally, we assessed DPG as a candidate for combinational therapy in GBM with temozolomide (TMZ). Our results demonstrated that the viability of U87MG and T98G cells significantly decreased in a time- and dose-dependent manner after DPG treatment, and the apoptotic ratio of DPG-treated groups was significantly higher than that of control groups. In addition, DPG in combination with TMZ revealed synergistic effects. Furthermore, the expression of NF-κB-luciferase-reporter in transfected GBM cell lines was remarkably reduced after DPG exposure by up-regulating miR16 and miR146a, which down-regulate its target genes, IRAK2 and TRAF6. A reduced neuro-sphere formation was also observed after DPG in both GBM cells. In conclusion, DPG presented anti-tumoral effect on GBM cell lines through a decrease on proliferation and an increase on apoptosis. In addition, our data also suggest that DPG anti-tumoral effect is related to NF-κB suppression, where IRAK2- and TRAF6-mediating miR16 and miR146a, respectively, might be a potential therapeutic target of DPG.

16.
Eur J Nutr ; 58(2): 765-774, 2019 Mar.
Article in English | MEDLINE | ID: mdl-29626231

ABSTRACT

PURPOSE: Maternal obesity can program the offspring, increasing the risk of overweight and obesity in adult life. Guarana (Paullinia cupana) is a Brazilian plant that has weight-reducing effects. Thus, this study aimed to evaluate the effects of Guarana on metabolic and inflammatory parameters in mice programmed by maternal obesity. METHODS: Swiss female mice were divided into two groups: control and high fat (HF), who received a standard diet or a high-fat diet (HFD), respectively, for 8 weeks prior to mating, gestation, and lactation. After post-natal day (PN) 21, the offspring of the HF group were subdivided into three groups: HF without treatment; HF early treatment, offspring treated with Guarana (1 g/kg bodyweight) in PN25-PN30; HF late treatment, offspring treated with Guarana (1 g/kg bodyweight) in PN65-PN75. Basal energy expenditure, the lipid profile and fasting glucose levels were determined. Body composition was evaluated by dissecting adipose tissue depots. Gene expression was analyzed using real-time PCR. RESULTS: During mating, the weight of HF females increased; after lactation, their adipose tissue depots and fasting glycemic levels also increased. The offspring of the HF group showed an increased body weight at PN21. At PN80, in the mice treated with Guarana (with both treatments), VO2 and energy expenditure increased, adipose tissue depots decreased, and the expression of leptin, IL-6, TNF-α, and MCP-1 decreased compared with that in the HF group. CONCLUSIONS: Guarana treatment at both stages of life reversed some of the alterations developed by the offspring of HF animals in adult life.


Subject(s)
Inflammation/metabolism , Maternal Nutritional Physiological Phenomena , Obesity/metabolism , Paullinia , Plant Extracts/pharmacology , Prenatal Exposure Delayed Effects/metabolism , Animals , Disease Models, Animal , Female , Male , Mice , Plant Extracts/administration & dosage , Plant Extracts/metabolism , Pregnancy
17.
Dig Dis Sci ; 63(11): 2889-2897, 2018 11.
Article in English | MEDLINE | ID: mdl-30083861

ABSTRACT

BACKGROUND: GATA factors, which constitute a family of transcription regulatory proteins, participate in gastrointestinal development. Trefoil factor 1 (TFF1) plays a crucial role in mucosal defense and healing, and evidence suggests that GATA-5 mediated its regulation. Gastric cancer is a multiple-step process triggered by Helicobacter pylori and is characterized by accumulation of molecular and epigenetic alteration. The aim of this study was to evaluate the effect of H. pylori infection on the regulation of GATA-5 and TFF1 in vitro and in vivo. RESULTS: Infected cells exhibited upregulation of GATA-5 and TFF1 after 48 h. An increase in GATA-5 and TFF1 mRNA levels was also found in mice samples after 6 and 12 months of infection, respectively. In human samples, we found an association between H. pylori infection and GATA-5 upregulation. In fact, among H. pylori-infected patients, hypermethylation was observed in 45.5% of pediatric samples, in 62.6% of chronic gastritis samples, and in 63% of gastric cancer samples. Regarding TFF1, the expression levels were similar in pediatrics and adults patients, and were independent of H. pylori infection, and the expression of these factors was downregulated in gastric cancer samples. GATA-5 promoter methylation was associated with a decrease in TFF1 mRNA levels. CONCLUSIONS: Our results suggest that the upregulation of GATA-5 and TFF1 observed in vitro and in vivo may be correlated with a protective effect of the mucosa in response to infection. The epigenetic inactivation of GATA-5 observed in human biopsies from infected patients may suggest that this alteration is an early event occurring in association with H. pylori infection.


Subject(s)
GATA5 Transcription Factor/metabolism , Gastritis/metabolism , Helicobacter Infections/metabolism , Stomach Neoplasms/metabolism , Trefoil Factor-1/metabolism , Adult , Aged , Animals , Child , Child, Preschool , DNA Methylation , Epithelial Cells/metabolism , Female , Gastritis/microbiology , Gene Expression Regulation , Humans , Male , Mice , Mice, Inbred C57BL , Middle Aged , Promoter Regions, Genetic , Stomach Neoplasms/microbiology , Young Adult
18.
Sci Rep ; 8(1): 9001, 2018 06 13.
Article in English | MEDLINE | ID: mdl-29899556

ABSTRACT

For reliable results, Reverse Transcription Quantitative real-time Polymerase Chain Reaction (RT-qPCR) analyses depend on stably expressed reference genes for data normalization purposes. Klebsiella pneumoniae is an opportunistic Gram-negative bacterium that has become a serious threat worldwide. Unfortunately, there is no consensus for an ideal reference gene for RT-qPCR data normalization on K. pneumoniae. In this study, the expression profile of eleven candidate reference genes was assessed in K. pneumoniae cells submitted to various experimental conditions, and the expression stability of these candidate genes was evaluated using statistical algorithms BestKeeper, NormFinder, geNorm, Delta CT and RefFinder. The statistical analyses ranked recA, rho, proC and rpoD as the most suitable reference genes for accurate RT-qPCR data normalization in K. pneumoniae. The reliability of the proposed reference genes was validated by normalizing the relative expression of iron-regulated genes in K. pneumoniae cells submitted to iron-replete and iron-limited conditions. This work emphasizes that the stable expression of any potential reference candidate gene must be validated in each physiological condition or experimental treatment under study.


Subject(s)
Gene Expression Profiling/methods , Gene Expression Regulation, Bacterial , Genes, Bacterial/genetics , Klebsiella pneumoniae/genetics , Real-Time Polymerase Chain Reaction/methods , Reverse Transcriptase Polymerase Chain Reaction/methods , Algorithms , Computational Biology/methods , Reference Standards , Reproducibility of Results
19.
Mol Nutr Food Res ; 62(15): e1800142, 2018 Aug.
Article in English | MEDLINE | ID: mdl-29851217

ABSTRACT

SCOPE: The potential effects of yerba mate (YM) on mitochondrial biogenesis and thermogenesis are evaluated. METHODS AND RESULTS: The in vitro effects of YM on mitochondrial respiration are assessed in C2C12 cells. The expression of genes related to mitochondrial biogenesis and thermogenesis are analyzed by quantitative PCR. The in vivo experiments are performed on mice fed a high-fat diet (HFD) and treated with YM extract. Indirect calorimetry was performed, and the expression of genes and proteins related to mitochondrial biogenesis, thermogenesis, and de novo lipogenesis is determined by quantitative PCR and western blot. Our in vitro data indicate that YM increases mtDNA copy number as well as mitochondrial spare respiratory capacity and coupling efficiency. The gene expression profile reinforces this evidence, indicating a modulation of genes downstream of Ampk. In vivo, it is found that YM partially prevents diet-induced obesity by increasing energy expenditure and enhancing mitochondrial biogenesis via the AMPK/SIRT1/PGC1α pathway. CONCLUSIONS: YM stimulates mitochondriogenesis and Ucp expression, leading to an increase in the spare respiratory capacity and energy dissipation. These effects may help to better understand the potential use of YM for obesity treatment.

20.
Nutrients ; 10(2)2018 Jan 31.
Article in English | MEDLINE | ID: mdl-29385074

ABSTRACT

The aim of this study was to evaluate the effects of guarana on mitochondrial biogenesis in a high-fat diet (HFD)-fed mice. C57BL6J mice were divided in two groups: high-fat diet HFD and high-fat diet + guarana (HFD-GUA). Both groups received HFD and water ad libitum and the HFD-GUA group also received a daily gavage of guarana (1 g/kg weight). Body weight and food intake was measured weekly. Glycemic, triglyceride, and cholesterol levels were determined. VO2 and energy expenditure (EE) were determined by indirect calorimetry. Gene expression was evaluated by real-time PCR and protein content by western blotting. The HFD-GUA group presented lower body weight, subcutaneous, retroperitoneal, visceral, and epididyimal adipose tissue depots, and glycemic and triglyceride levels, with no change in food intake and cholesterol levels. Furthermore, the HFD-GUA group presented an increase in VO2 and basal energy expenditure (EE), as well as Pgc1α, Creb1, Ampka1, Nrf1, Nrf2, and Sirt1 expression in the muscle and brown adipose tissue. In addition, the HFD-GUA group presented an increase in mtDNA (mitochondrial deoxyribonucleic acid) content in the muscle when compared to the HFD group. Thus, our data showed that guarana leads to an increase in energetic metabolism and stimulates mitochondrial biogenesis, contributing to control of weight gain, even when associated with high-fat diet.


Subject(s)
Anti-Obesity Agents/pharmacology , Diet, High-Fat , Energy Metabolism/drug effects , Mitochondria, Muscle/drug effects , Muscle, Skeletal/drug effects , Obesity/prevention & control , Organelle Biogenesis , Paullinia , Plant Extracts/pharmacology , Weight Loss/drug effects , AMP-Activated Protein Kinases/genetics , AMP-Activated Protein Kinases/metabolism , Adipose Tissue, Brown/drug effects , Adipose Tissue, Brown/metabolism , Adipose Tissue, Brown/pathology , Animals , Anti-Obesity Agents/isolation & purification , Cyclic AMP Response Element-Binding Protein/genetics , Cyclic AMP Response Element-Binding Protein/metabolism , Disease Models, Animal , Male , Mice, Inbred C57BL , Mitochondria, Muscle/metabolism , Mitochondria, Muscle/pathology , Muscle, Skeletal/metabolism , Muscle, Skeletal/pathology , NF-E2-Related Factor 1/genetics , NF-E2-Related Factor 1/metabolism , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism , Obesity/genetics , Obesity/metabolism , Obesity/pathology , Paullinia/chemistry , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/genetics , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Phytotherapy , Plant Extracts/isolation & purification , Plants, Medicinal , Sirtuin 1/genetics , Sirtuin 1/metabolism , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL