ABSTRACT
PURPOSE: To evaluate the influence of ocular axial length on circumpapillary retinal nerve fiber layer and ganglion cell-inner plexiform layer thickness in healthy eyes after correcting for ocular magnification effect. METHODS: In this cross-sectional study, we evaluated 120 eyes from 60 volunteer participants (myopes, emmetropes, and hyperopes). The thickness of the circumpapillary retinal nerve fiber layer and ganglion cell-inner plexiform layer were measured using the spectral optical coherence tomography (OCT)-Cirrus HD-OCT and correlated with ocular axial length. Adjustment for ocular magnification was performed by applying Littmann's formula. RESULTS: Before the adjustment for ocular magnification, age-adjusted mixed models analysis demonstrated a significant negative correlation between axial length and average circumpapillary retinal nerve fiber layer thickness (r=-0.43, p<0.001), inferior circumpapillary retinal nerve fiber layer thickness (r=-0.46, p<0.001), superior circumpapillary retinal nerve fiber layer thickness (r=-0.31, p<0.05), nasal circumpapillary retinal nerve fiber layer thickness (r=-0.35, p<0.001), and average ganglion cell-inner plexiform layer thickness (r=-0.35, p<0.05). However, after correcting for magnification effect, the results were considerably different, revealing only a positive correlation between axial length and temporal retinal nerve fiber layer thickness (r=0.42, p<0.001). Additionally, we demonstrated a positive correlation between axial length and average ganglion cell-inner plexiform layer thickness (r=0.48, p<0.001). All other correlations were not found to be statistically significant. CONCLUSIONS: Before adjustment for ocular magnification, axial length was negatively correlated with circumpapillary retinal nerve fiber layer and ganglion cell-inner plexiform layer thickness measured by Cirrus-OCT. We attributed this effect to ocular magnification associated with greater axial lengths, which was corrected with the Littman's formula. Further studies are required to investigate the impact of ocular magnification correction on the diagnostic accuracy of Cirrus-OCT.
Subject(s)
Tomography, Optical Coherence , Cross-Sectional Studies , Glaucoma , Humans , Nerve Fibers , Retinal Ganglion CellsABSTRACT
ABSTRACT Purpose: To evaluate the influence of ocular axial length on circumpapillary retinal nerve fiber layer and ganglion cell-inner plexiform layer thickness in healthy eyes after correcting for ocular magnification effect. Methods: In this cross-sectional study, we evaluated 120 eyes from 60 volunteer participants (myopes, emmetropes, and hyperopes). The thickness of the circumpapillary retinal nerve fiber layer and ganglion cell-inner plexiform layer were measured using the spectral optical coherence tomography (OCT)-Cirrus HD-OCT and correlated with ocular axial length. Adjustment for ocular magnification was performed by applying Littmann's formula. Results: Before the adjustment for ocular magnification, age-adjusted mixed models analysis demonstrated a significant negative correlation between axial length and average circumpapillary retinal nerve fiber layer thickness (r=-0.43, p<0.001), inferior circumpapillary retinal nerve fiber layer thickness (r=-0.46, p<0.001), superior circumpapillary retinal nerve fiber layer thickness (r=-0.31, p<0.05), nasal circumpapillary retinal nerve fiber layer thickness (r=-0.35, p<0.001), and average ganglion cell-inner plexiform layer thickness (r=-0.35, p<0.05). However, after correcting for magnification effect, the results were considerably different, revealing only a positive correlation between axial length and temporal retinal nerve fiber layer thickness (r=0.42, p<0.001). Additionally, we demonstrated a positive correlation between axial length and average ganglion cell-inner plexiform layer thickness (r=0.48, p<0.001). All other correlations were not found to be statistically significant. Conclusions: Before adjustment for ocular magnification, axial length was negatively correlated with circumpapillary retinal nerve fiber layer and ganglion cell-inner plexiform layer thickness measured by Cirrus-OCT. We attributed this effect to ocular magnification associated with greater axial lengths, which was corrected with the Littman's formula. Further studies are required to investigate the impact of ocular magnification correction on the diagnostic accuracy of Cirrus-OCT.
RESUMO Objetivo: Avaliar a influência do comprimento axial ocular na espessura da camada de fibras nervosas da retina peripapilar e na espessura da camada de células ganglionares-plexiforme interna em olhos saudáveis após correção para efeito de magnificação ocular. Métodos: Neste estudo transversal, avaliamos 120 olhos de 60 participantes voluntários (míopes, emétropes e hipermétropes). A espessura da camada de fibras nervosas da retina peripapilar e da camada de células ganglionares-plexiforme interna foram medidas usando a tomografia de coerência óptica espectral (OCT)-Cirrus HD-OCT e correlacionada com o comprimento axial ocular. O ajuste para a magnificação ocular foi realizado aplicando a fórmula de Littmann. Resultados: Antes do ajuste para magnificação ocular, a análise de modelos mistos ajustada por idade demonstrou uma correlação negativa significante entre o comprimento axial e a espessura média da camada de fibras nervosas da retina peripapilar (r=-0,43; p<0,001), espessura da camada de fibras nervosas da retina peripapilar inferior (r=-0,46; p <0,001), espessura da camada de fibras nervosas da retina peripapilar superior (r=-0,31; p<0,05), espessura da camada de fibras nervosas da retina peripapilar nasal (r=-0,35; p<0,001) e espessura média das células ganglionares-plexiforme interna (r=-0,35; p<0,05). No entanto, após a correção do efeito de magnificação, os resultados foram consideravelmente diferentes, revelando apenas uma correlação positiva entre o comprimento axial e a espessura temporal da camada de fibras nervosas da retina(r=0,42; p<0,001). Além disso, demonstramos uma correlação positiva entre o comprimento axial e a espessura média das células ganglionares-plexiforme interna (r=0,48; p<0,001). Todas as outras correlações não foram consideradas estatisticamente significativas. Conclusão: Antes do ajuste para o efeito de magnificação ocular, o comprimento axial estava negativamente correlacionado com a espessura da camada de fibras nervosas da retina peripapilar e das células ganglionares-plexiforme interna medido pelo Cirrus-OCT. Atribuimos esse efeito à magnificação ocular associada a comprimentos axiais maiores, o que foi corrigido com a fórmula de Littman. Mais estudos são necessários para investigaro impactoda correçãoda magnificação ocular na acurácia diagnóstica do Cirrus-OCT.
Subject(s)
Humans , Tomography, Optical Coherence , Retinal Ganglion Cells , Glaucoma , Cross-Sectional Studies , Nerve FibersABSTRACT
BACKGROUND: Laparoscopic surgery is a reality in almost all surgical centers. Although with initial greater technical difficulty for surgeons, the rapid return to activities, less postoperative pain and higher quality aesthetic stimulates surgeons to evolve technically in this area. However, unlike open surgery where learning opportunities are more accessible, the laparoscopic training represents a challenge in surgeon formation. AIM: To present a low cost model for laparoscopic training box. METHODS: This model is based in easily accessible materials; the equipment can be easily found based on chrome mini jet and passes rubber thread and a webcam attached to an aluminum handle. RESULTS: It can be finalized in two days costing R$ 280,00 (US$ 90). CONCLUSION: It is possible to stimulate a larger number of surgeons to have self training in laparoscopy at low cost seeking to improve their surgical skills outside the operating room.
Subject(s)
Education, Medical/methods , Laparoscopy/economics , Laparoscopy/education , Simulation Training , Costs and Cost AnalysisABSTRACT
Background: Laparoscopic surgery is a reality in almost all surgical centers. Although with initial greater technical difficulty for surgeons, the rapid return to activities, less postoperative pain and higher quality aesthetic stimulates surgeons to evolve technically in this area. However, unlike open surgery where learning opportunities are more accessible, the laparoscopic training represents a challenge in surgeon formation.Aim:To present a low cost model for laparoscopic training box. Methods: This model is based in easily accessible materials; the equipment can be easily found based on chrome mini jet and passes rubber thread and a webcam attached to an aluminum handle. Results: It can be finalized in two days costing R$ 280,00 (US$ 90). Conclusion: It is possible to stimulate a larger number of surgeons to have self training in laparoscopy at low cost seeking to improve their surgical skills outside the operating room.
Racional:A cirurgia laparoscópica já é realidade em praticamente todos os centros cirúrgicos. Muito embora haja maior dificuldade técnica, o rápido retorno às atividades, menor dor pós-operatória e maior qualidade estética estimulam os cirurgiões a evoluírem tecnicamente nesta área. Porém, ao contrário das operações abertas onde as oportunidades de aprendizagem são mais acessíveis, o treinamento laparoscópico acaba sendo desafio ao longo da formação de um cirurgião.Objetivo:Apresentar um modelo de caixa de treinamento laparoscópico de baixo custo. Métodos:Foram utilizados materiais de fácil acesso, mini jato cromado, passa fios de borracha e uma webcam acoplada a um cabo de alumínio.Resultados:A white box foi produzida em dois dias com custo de R$ 280,00. Conclusão:É possível estimular o treinamento de maior número de cirurgiões na formação laparoscópica a baixo custo e buscar aperfeiçoamento de suas habilidades cirúrgicas fora do centro cirúrgico.
Subject(s)
Education, Medical/methods , Laparoscopy/economics , Laparoscopy/education , Simulation Training , Costs and Cost AnalysisABSTRACT
PURPOSE: The aim of this study was to evaluate echocardiography-based indices of myocardial function and markers of vascular inflammation and endothelial dysfunction in the early phases of severe sepsis. MATERIAL AND METHODS: Forty-five adult patients (67% women; age 51 ± 18 years; Acute Physiology and Chronic Health Disease Classification System II score, 23 ± 7) admitted to the intensive care unit up to 24 hours after fulfilling criteria for severe sepsis or septic shock were studied. Clinical, laboratorial (endothelin 1 [ET1], vascular cellular adhesion molecule 1), and echocardiographic data were collected within the first 24 hours and again 72 hours and 7 days after admission. RESULTS: Intrahospital mortality was 33% (15 deaths). Left ventricular (LV) dysfunction (LV ejection fraction <55%) was identified in 15 (33%) patients, whereas right ventricular (RV) dysfunction (RV tissue Doppler peak systolic velocity [RV-Sm] <12 cm/s) was present in 14 (30%) patients. LogET1 was increased in patients with LV dysfunction (2.3 ± 0.6 vs 1.8 ± 0.4 pg/mL; P = .01) and RV dysfunction (2.5 ± 0.5 vs 1.8 ± 0.4 pg/mL; P < .001) and had negative correlations with LV ejection fraction (r = -0.50; P = .002) and RV-Sm (r = -0.67; P < .001). Left ventricular end-diastolic diameter, RV-Sm, and diastolic dysfunction were able to discriminate survivors from nonsurvivors, and the combination of these parameters identified groups of very low and high risk. CONCLUSION: Both LV and RV systolic dysfunctions are prevalent in severe sepsis, being directly associated with markers of endothelial dysfunction. Left ventricular nondilation, RV dysfunction, and diastolic dysfunction seem related to poor prognosis in this scenario.