Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Acta Histochem ; 122(2): 151484, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31902536

ABSTRACT

The aim of this study was to evaluate whether the addition of synthetic polymers to the vitrification solution affected follicular morphology and development and the expression of Ki-67, Aquaporin 3 (AQP3) and cleaved Caspase-3 proteins in ovarian tissue of the caprine species. Caprine ovaries were fragmented and two fragments were immediately fixed (Fresh Control) for morphological evaluation, while other two were in vitro cultured for 7 days (Cultured Control) and fixed as well. The remaining fragments were distributed in two different vitrification groups: Vitrified and Vitrified/Cultured. Each group was composed of 4 different treatments: 1) Sucrose (SUC); 2) SuperCool X-1000 0.2 % (X-1000); 3) SuperCool Z-1000 0.4 % (Z-1000) or 4) with polyvinylpyrrolidone K-12 0.2 % (PVP). Also, Fresh Control, Cultured Control, SUC and X-1000 were destined to immunohistochemical detection of Ki-67, AQP3 and cleaved Caspase-3 proteins. Morphologically, the treatment with X-1000 showed no significant difference with the Fresh Control group and was superior to the other treatments. After the cleaved caspase-3 analysis, X-1000 showed the lowest percentages of strong immunostaining while Cultured Control showed the highest. Also, a positive correlation was found between the percentages of degenerated follicles and the percentages of strong staining intensity follicles. Regarding the AQP3 analysis, the highest percentages of strong AQP3 staining intensity were found in X-1000. In conclusion, we have demonstrated that the addition of the synthetic polymer SuperCool X-1000 to the vitrification solution improved the current vitrification protocol of caprine ovarian tissue.


Subject(s)
Oocytes/drug effects , Ovarian Follicle/drug effects , Ovary/drug effects , Polymers/pharmacology , Animals , Cryopreservation/methods , Female , Goats , Hair Follicle/drug effects , Hair Follicle/metabolism , Oocytes/metabolism , Ovary/metabolism , Tissue Culture Techniques/methods , Vitrification
2.
Reprod Biol ; 19(3): 270-278, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31466906

ABSTRACT

The present study evaluated the effect of the addition of antioxidants anethole (AN) and robinin (RO) in the vitrification solution, and the in vitro incubation (IVI) medium of ovine ovarian tissue. Ovarian fragments were vitrified without antioxidant (VWA) or with different concentrations of AN (30, 300 and 2000 µg/mL) or RO (0.125, 0.25 and 0.50 mg/mL), followed by IVI (24 h). Histological analyses showed that the percentage of morphologically normal preantral follicles (MNPF) in AN 2000 did not differ from RO 0.125 or fresh ovarian tissue (CTR). Subsequently, ovarian fragments were vitrified in the presence of AN 2000 and RO 0.125 followed by IVI without or with (AN 2000+ and RO 0.125+) the same antioxidants. The follicular activation in all treatments was significantly increased as compared to the CTR. The stroma cell density (SCD) in all the vitrified fragments was significantly lower than the CTR. However, in the AN 2000 and RO 0.125 this parameter was significantly higher when compared to the VWA. The reactive oxygen species (ROS) in the ovarian cortex of the AN 2000 or AN 2000+ were significantly reduced in comparison with the CTR while the intracellular ROS levels of AN 2000 and CTR were similar. The total antioxidant capacity (TAC) in RO 0.125 was significantly higher than that of VWA, AN 2000 and AN 2000+. According to the results, the use of antioxidants (AN or RO) only in the vitrification solution of ovine ovarian tissue is recommended, due to their better preservation of the SCD. Moreover, AN 2000 best maintains the follicular morphology, while RO 0.125 has a high TAC.


Subject(s)
Antioxidants/metabolism , Cryopreservation/veterinary , Ovary/drug effects , Sheep , Tissue Preservation/veterinary , Animals , Cryopreservation/methods , Culture Media , Female , Reactive Oxygen Species/metabolism , Vitrification
3.
Vet Res Forum ; 10(1): 9-16, 2019.
Article in English | MEDLINE | ID: mdl-31183010

ABSTRACT

Previous studies have reported many discrepancies about the best type and concentration of cryoprotective agents (CPAs) and biological variability among various pre-antral follicle classes after cryopreservation of ovarian tissue. The aim of this study was to investigate the impacts of some synthetic polymers on histological characteristics of different types of pre-antral follicles after bovine ovarian tissue vitrification. From each bovine ovarian pair, fragments were recovered and immediately fixed for analysis (fresh control group) or submitted to vitrification (sucrose, X-1000, Z-1000 and polyvinylpyrrolidone groups), either followed by in vitro culture for 1 or 5 days. In this case, although, the addition of X-1000 resulted in greater percentages of normal follicles for almost all pre-antral follicle classes compared to those of other groups, there are some exceptions. These results indicate that the inclusion of polyvinylpyrrolidone in the freezing media can improve the morphology of the post-warmed transitional follicles and cultured primordial follicles on day five more than other CPAs. According to the results of this study, it can be concluded that although ovarian tissue cryopreservation is often performed to preserve the primordial follicles, by choosing the best combination of permeating and non-permeating CPAs (synthetic polymers), more advanced stages of bovine pre-antral follicles, transitional, primary and secondary follicles, may also survive the cryopreservation process.

4.
Reprod Domest Anim ; 54(2): 216-224, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30203872

ABSTRACT

The aim of this study was to evaluate the caprine preantral follicles enclosed on vitrified/warmed ovarian cortex grafted to nude BALB/mice during 1 month. The ovarian cortex from goats was fragmented (3 × 3 × 0.5 mm) and divided into four groups: fresh control, vitrified control, fresh transplant and vitrified transplant. Follicular morphology, development and density, fibrosis as well as apoptosis, and tissue revascularization were evaluated. It was also observed a significant decrease in morphologically normal preantral (primordial, transition, primary and secondary) follicles in both vitrified control and vitrified transplant treatments when compared with both fresh control and fresh transplant. However, fresh control and fresh transplant exhibited a similar percentage of developing follicles. Additionally, Vitrified control showed a significant increase in developing follicles in comparison with both fresh control and fresh transplant. Follicular density significantly decreased in all treatments in comparison with fresh control. We observed high fibrosis in both fresh transplant and vitrified transplant. The mRNA expression of caspase 3 was lower in both fresh transplant and vitrified transplant in comparison with vitrified control. In conclusion, xenotransplantation is an excellent strategy to maintain normal preantral follicle morphology after vitrification/warming of goat ovarian tissue. Yet, in order to ensure the survival and development of these follicles, it is essential to improve the revascularization of the graft.


Subject(s)
Goats/physiology , Ovarian Follicle/growth & development , Ovarian Follicle/transplantation , Transplantation, Heterologous/veterinary , Vitrification , Animals , Apoptosis , Cryopreservation/veterinary , Female , Gene Expression , Mice , Mice, Inbred BALB C , Mice, Nude , RNA, Messenger/analysis , Tissue Culture Techniques/veterinary
5.
Reprod Toxicol ; 84: 18-25, 2019 03.
Article in English | MEDLINE | ID: mdl-30579997

ABSTRACT

The Withanolide D is a chemotherapeutic potential against the human tumor cell. However, there is no report on the effect of this compound on ovarian function, especially on preantral folliculogenesis. The aim of this study was to evaluate the toxicity of a new candidate to anticancer drug, Withanolide D (WD) on morphologic integrity, development (activation and granulosa cell proliferation) and gene expression of ABCB1 protein of caprine preantral follicles. Ovarian fragments were cultured in vitro for 2 or 6 days in α-MEM or α-MEM added with paclitaxel (PTX -0.1 µg/mL; negative control) and different concentrations of WD (WD1.5, WD3.0 or WD6.0). The higher dose of WD showed a toxic effect similar to PTX and higher (P < 0.05) than other treatments after 2 and 6 days. In addition, WD6.0 reduced the cell proliferating compared to PTX or mild dose. The expression of ABCB1 remained unchanged in the presence of the chemotherapeutic agents (PTX and WD) throughout the culture period. In conclusion, WD exerted a toxic effect observed by decreasing follicular survival and cell proliferation, on the preantral caprine follicles similar to PTX, whose negative effect on folliculogenesis is already widely known.


Subject(s)
Antineoplastic Agents/toxicity , Ovarian Follicle/drug effects , Withanolides/toxicity , Animals , Cell Cycle/drug effects , Cell Proliferation/drug effects , Cell Survival/drug effects , Female , Goats
6.
Theriogenology ; 114: 244-251, 2018 Jul 01.
Article in English | MEDLINE | ID: mdl-29660627

ABSTRACT

This study aimed to evaluate whether the addition of resveratrol to vitrification/thawing medium improves the cryotolerance of preantral follicles enclosed in bovine ovarian fragments. Ovarian fragments were obtained from bovine fetuses and distributed to the following groups: fresh ovarian fragments (control), vitrified (VIT), and vitrified with resveratrol (VIT + RESV). Overall, the mean percentage of normal follicles was greater (P < 0.05) in the VIT + RESV compared to the VIT group. Moreover, the probability of finding normal follicles was 2.5 greater (P < 0.05) in the VIT + RESV group. In class comparison, the primordial and transitional follicles have ∼3.0 times (P < 0.05) greater odds of being normal after vitrification compared to the secondary follicles. Additionally, a negative association (P < 0.05) was observed between the proportion of viable follicles and the stage of follicular development. ROS levels were similar (P > 0.05) between the VIT and VIT + RESV groups, and both were lower (P < 0.05) than the control group. The tissue viability in the VIT + RESV group was similar (P > 0.05) to the control group. In summary, the resveratrol provided greater ovarian tissue viability and has a positive effect against degeneration of preantral follicles enclosed in ovarian fragments.


Subject(s)
Cryopreservation/veterinary , Ovarian Follicle/drug effects , Stilbenes/pharmacology , Tissue Preservation/veterinary , Vitrification/drug effects , Animals , Antioxidants/pharmacology , Cattle , Female , Resveratrol
7.
Theriogenology ; 85(7): 1203-10, 2016 Apr 15.
Article in English | MEDLINE | ID: mdl-26852069

ABSTRACT

Cryopreservation of preantral follicles is a promising technique to preserve female fertility. The aim of this study was to evaluate the effect of vitrification on the development of secondary follicles included in ovarian tissue or isolated after microdissection. An important end point included is the capacity of grown oocytes to resume meiosis. Sheep ovarian cortexes were cut into fragments and split into three different groups: (1) fresh (control): secondary follicles isolated without any previous vitrification; (2) follicle-vitrification (follicle-vit): secondary follicles vitrified in isolated form; and (3) tissue-vitrification (tissue-vit): secondary follicles vitrified within fragments of ovarian tissue (in situ former) and subsequently subjected to isolation. From the three groups, isolated secondary follicles were submitted to IVC for 18 days. After IVC, cumulus-oocyte complexes (COCs) were harvested from follicles. As an additional control group, in vivo grown, in vivo-grown COCs were collected from antral ovarian follicles. All, recovered COCs were matured and the chromatin configuration was evaluated. Data were analyzed by ANOVA, and the means were compared by Student-Newman-Keuls test, and by chi-square. Differences were considered to be significant when P < 0.05. Isolated preantral follicles from all treatments had normal morphology, antrum formation, and low follicle degeneration after IVC. The growth rate between control and follicle-vit did not differ (P > 0.05), and was higher (P < 0.05) than for tissue-vit. The percentage of follicles that decreased diameter during IVC was significantly higher in tissue-vit than the in follicle-vit. Recovery rate of oocytes from normal follicles was higher in follicle-vit than in tissue-vit. Furthermore, oocyte viability was lower in tissue-vit than other treatments, and follicle-vit did not differ from control and in vivo grown. The percentage of oocytes meiosis resuming was not different between treatments except for in vivo grown. After vitrification, only follicle-vit showed metaphase I oocyte. We conclude that secondary follicles vitrified after isolation displayed a better follicular growth rate, oocyte viability, percentage of oocytes reaching the metaphase I stage, and fewer follicles with decreased diameter after IVC.


Subject(s)
Cryopreservation , Ovarian Follicle/physiology , Sheep/physiology , Tissue Preservation/veterinary , Vitrification , Animals , Female , Meiosis , Tissue Preservation/methods
8.
Theriogenology ; 85(8): 1457-67, 2016 May.
Article in English | MEDLINE | ID: mdl-26876055

ABSTRACT

Cryoinjuries caused by vitrification of tissues and organs lead to the loss of membrane proteins that mediate intercellular communications, such as connexins 37 (Cx37) and 43 (Cx43). Thus, the present study aimed to evaluate ovine Cx37 and Cx43 gene and protein expressions and developmental competence by in vitro-cultured secondary follicles retrieved from vitrified ovarian tissue. Ovarian fragments for the same ovary pair were distributed into six treatments: (1) fresh ovarian tissue (FOT); (2) vitrified ovarian tissue (VOT); (3) isolated follicles from fresh ovarian tissue (FIF); (4) isolated follicles from vitrified ovarian tissue; (5) isolated follicles from fresh ovarian tissue followed by in vitro culture (CFIF); (6) isolated follicles from vitrified ovarian tissue followed by in vitro culture (CVIF). In all treatments, Cx37 and Cx43 gene and protein expression patterns were evaluated by reverse transcription polymerase chain reaction and immunocytochemistry. In addition, secondary follicles were analyzed according to follicular integrity and growth, apoptosis, and cell proliferation. In vitro-cultured secondary follicles (CFIF and CVIF) were evaluated based on morphology (extruded follicles), antrum formation, and viability. The percentage of intact follicles was higher, whereas antrum formation, oocyte extrusion rate, and follicle viability were lower in CVIF than in CFIF treatment (P < 0.05). Terminal deoxynucleotidyl transferase-mediated biotinylated deoxyuridine triphosphates nick end-labeling assay demonstrated that apoptosis was absent in FIF, whereas follicles from all other treatments showed positive labeling. Cell proliferation index was higher in isolated follicles from vitrified ovarian tissue and CVIF treatments than in follicles from FIF. Expression of Cx43 messenger RNA was lower in CVIF treatment when compared with follicles from all other treatments (P < 0.05). Follicle Cx37 messenger RNA levels did not show alterations in any treatment (P > 0.05). Cx37 and Cx43 immunolabeling was localized mainly on granulosa cells and oocytes, respectively. In conclusion, isolation of ovine secondary follicles could be done successfully after vitrification of ovarian tissue, and the basement membrane integrity remained intact after in vitro culture. Although the gene and protein expression of Cx37 did not change after vitrification of ovarian tissue, Cx43 turned out to be altered in secondary follicles after vitrification and in vitro culture.


Subject(s)
Connexin 43/metabolism , Connexins/metabolism , Ovarian Follicle/growth & development , Sheep , Animals , Apoptosis , Cell Culture Techniques/veterinary , Cell Proliferation , Connexin 43/genetics , Connexins/genetics , Cryopreservation/veterinary , Female , Fluorescent Antibody Technique , Gene Expression , Gene Expression Regulation, Developmental , Ovarian Follicle/cytology , Ovarian Follicle/metabolism , RNA, Messenger/metabolism , Vitrification , Gap Junction alpha-4 Protein
SELECTION OF CITATIONS
SEARCH DETAIL
...