Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Mater Chem B ; 12(10): 2471-2480, 2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38345783

ABSTRACT

Lignocellulosic biomass represents an abundant and eco-friendly material widely explored in recent years. The main lignocellulosic fractions include cellulose, hemicellulose, and lignin. Nonetheless, the heterogeneity and complexity of these components pose challenges in achieving the desired properties. Conversely, their attractive functional groups can covalently link with other biomolecules, facilitating the creation and enhancement of material properties. Lignocellulosic molecules can form different linkages with other biomolecules through classic and modern methods. Bioconjugation has emerged as a suitable alternative to create new nuances, empowering the linkage between lignocellulosic materials and biomolecules through linkers. These conjugates (lignocellulosic-linkers-biomolecules) attract attention from stakeholders in medicine, chemistry, biology, and agriculture. The plural formations of these biocomplexes highlight the significance of these arrangements. Therefore, this review provides an overview of the progress of lignocellulosic-biomolecule complexes and discusses different types of covalent bioconjugated systems, considering the formation of linkers, applicability, toxicity, and future challenges.


Subject(s)
Cellulose , Lignin , Lignin/chemistry , Biomass
2.
J Pharm Sci ; 113(2): 427-433, 2024 02.
Article in English | MEDLINE | ID: mdl-38008178

ABSTRACT

Ideally, the dressings used in the clinic have characteristics that help the wound closure process. Among several factors that affect the success of this healing process, there is debridement. It manages the wound bed components and the re-epithelialization process. Still, the property of debridement is not generally associated with dressings. Here, we show a chemically modified bacterial cellulose film conjugated to a proteolytic enzyme, papain, as a dressing with debridement properties. Bacterial cellulose films were reacted with a spacer derived from succinic acid and finally had this enzyme covalently immobilized in its structure by an amide bond. FT-IR and UV-vis showed bands typically of bioconjugated polymer. Enzymatic immobilization was very effective under the conditions applied with high yield (33% w/w), and these remained activated after the coupling reaction. The bacterial cellulose film with the enzyme papain attached to it was also very compatible with fibroblast cells, suggesting that it could be a promising wound dressing material for future research.


Subject(s)
Cellulose , Papain , Cellulose/chemistry , Spectroscopy, Fourier Transform Infrared , Wound Healing , Bandages
3.
Chem Phys Lipids ; 237: 105084, 2021 07.
Article in English | MEDLINE | ID: mdl-33891960

ABSTRACT

Liposomal systems are well known for playing an important role as drug carriers, presenting several therapeutic applications in different sectors, such as in drug delivery, diagnosis, and in many other academic areas. A novel class of this nanoparticle is the actively target liposome, which is constructed with the surface modified with appropriated molecules (or ligands) to actively bind a target molecule of certain cells, system, or tissue. There are many ways to functionalize these nanostructures, from non-covalent adsorption to covalent bond formation. In this review, we focus on the strategies of modifying liposomes by glycerophospholipid covalent chemical reaction. The approach used in this text summarizes the main reactions and strategies used in phospholipid modification that can be carried out by chemists and researchers from other areas. The knowledge of these methodologies is of great importance for planning new studies using this material and also for manipulating its properties.


Subject(s)
Liposomes/chemistry , Phospholipids/chemistry , Nanoparticles/chemistry , Phosphatidylethanolamines/chemistry , Polyethylene Glycols/chemistry , Surface Properties
4.
Eur J Pharm Sci ; 138: 105015, 2019 Oct 01.
Article in English | MEDLINE | ID: mdl-31344442

ABSTRACT

The development of new antimalarial drugs is urgent to overcome the spread of resistance to the current treatment. Herein we synthesized the compound 3, a hit-to­lead optimization of a thiazole based on the most promising 3-alkylpyridine marine alkaloid analog. Compound 3 was tested against Plasmodium falciparum and has shown to be more potent than its precursor (IC50 values of 1.55 and 14.7 µM, respectively), with higher selectivity index (74.7) for noncancerous human cell line. This compound was not mutagenic and showed genotoxicity only at concentrations four-fold higher than its IC50. Compound 3 was tested in vivo against Plasmodium berghei NK65 strain and inhibited the development of parasite at 50 mg/kg. In silico and UV-vis approaches determined that compound 3 acts impairing hemozoin crystallization and confocal microscopy experiments corroborate these findings as the compound was capable of diminishing food vacuole acidity. The assay of uptake using human intestinal Caco-2 cell line showed that compound 3 is absorbed similarly to chloroquine, a standard antimalarial agent. Therefore, we present here compound 3 as a potent new lead antimalarial compound.


Subject(s)
Alkaloids/chemistry , Antimalarials/pharmacology , Mutagens/pharmacology , Permeability/drug effects , Pyridines/chemistry , Thiazoles/chemistry , Animals , Caco-2 Cells , Cell Line , Cell Line, Tumor , Chloroquine/pharmacology , Female , Hemeproteins/chemistry , Humans , Malaria/drug therapy , Mice , Plasmodium berghei/drug effects , Plasmodium falciparum/drug effects
5.
Mater Sci Eng C Mater Biol Appl ; 77: 672-679, 2017 Aug 01.
Article in English | MEDLINE | ID: mdl-28532078

ABSTRACT

Bacterial cellulose membrane is a biomaterial with high value in the biomedical field. Many groups have been making efforts to promote chemical modifications of its structure and, consequently, add new characteristics. Recently, our group has developed a methodology to insert monoester succinic acid in bacterial cellulose membrane without disrupting the microfibril network and bind a protein on it. Considering the role of carbohydrates in the molecular recognition process in biological events, we continued these studies by inserting covalently multiples copies of aryl monosaccharide to bacterial cellulose succinylated and to study the in vitro tissue compatibility using fibroblasts. The mix of synthetical chemistry and material modification was performed to prepare aminoaryl mannoside and conjugate it, via amide bond using ultrasonic irradiation, to succinic group of bacterial cellulose. This material was characterized chemically (IR, UV-vis, 13C NMR CP-MAS) and physically (TGA and AFM). Mannosylated cellulose showed good in vitro compatibility with fibroblasts demonstrating its potential in the tissue engineering field which could provide a tissue compatible scaffold.


Subject(s)
Fibroblasts , Biocompatible Materials , Cellulose , Tissue Engineering , Tissue Scaffolds
6.
ACS Omega ; 2(11): 8264-8272, 2017 Nov 30.
Article in English | MEDLINE | ID: mdl-30023579

ABSTRACT

The need to develop new alternatives for antimalarial treatment is urgent. Herein, we report the synthesis and antimalarial evaluation of a small library of synthetic 3-alkylpyridine marine alkaloid (3-APA) analogs. First, the compounds were evaluated in vitro against Plasmodium falciparum. The most active compound 5c was selected for optimization of its antimalarial properties. An in silico approach was used based on pure ab initio electronic structure prediction, and the results indicated that a substitution of the hydroxyl group by a fluorine atom could favor a more stable complex with heme at a molecular ratio of 2:1 (heme/3-APA halogenated). A new fluorinated 3-APA analog was synthesized (compound 7), and its antimalarial activity was re-evaluated. Compound 7 exhibited optimized antimalarial properties (P. falciparum IC50 = 2.5 µM), low genotoxicity, capacity to form a more stable heme/3-APA complex at a molecular ratio of 2:1, and conformity to RO5. The new compound, therefore, has great potential as a new lead antimalarial agent.

SELECTION OF CITATIONS
SEARCH DETAIL
...