Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
Add more filters










Publication year range
1.
J Pineal Res ; 76(3): e12951, 2024 04.
Article in English | MEDLINE | ID: mdl-38572848

ABSTRACT

Melatonin is an important player in the regulation of many physiological functions within the body and in the retina. Melatonin synthesis in the retina primarily occurs during the night and its levels are low during the day. Retinal melatonin is primarily synthesized by the photoreceptors, but whether the synthesis occurs in the rods and/or cones is still unclear. Melatonin exerts its influence by binding to G protein-coupled receptors named melatonin receptor type 1 (MT1) and type 2 (MT2). MT1 and MT2 receptors activate a wide variety of signaling pathways and both receptors are present in the vertebrate photoreceptors where they may form MT1/MT2 heteromers (MT1/2h). Studies in rodents have shown that melatonin signaling plays an important role in the regulation of retinal dopamine levels, rod/cone coupling as well as the photopic and scotopic electroretinogram. In addition, melatonin may play an important role in protecting photoreceptors from oxidative stress and can protect photoreceptors from apoptosis. Critically, melatonin signaling is involved in the modulation of photoreceptor viability during aging and other studies have implicated melatonin in the pathogenesis of age-related macular degeneration. Hence melatonin may represent a useful tool in the fight to protect photoreceptors-and other retinal cells-against degeneration due to aging or diseases.


Subject(s)
Melatonin , Animals , Melatonin/metabolism , Neuroprotection , Retina/metabolism , Receptors, Melatonin/metabolism , Retinal Cone Photoreceptor Cells/metabolism , Receptor, Melatonin, MT1/metabolism , Receptor, Melatonin, MT2/metabolism , Mammals/metabolism
2.
Prog Retin Eye Res ; 94: 101119, 2023 05.
Article in English | MEDLINE | ID: mdl-36503722

ABSTRACT

Circadian (24-h) clocks are cell-autonomous biological oscillators that orchestrate many aspects of our physiology on a daily basis. Numerous circadian rhythms in mammalian and non-mammalian retinas have been observed and the presence of an endogenous circadian clock has been demonstrated. However, how the clock and associated rhythms assemble into pathways that support and control retina function remains largely unknown. Our goal here is to review the current status of our knowledge and evaluate recent advances. We describe many previously-observed retinal rhythms, including circadian rhythms of morphology, biochemistry, physiology, and gene expression. We evaluate evidence concerning the location and molecular machinery of the retinal circadian clock, as well as consider findings that suggest the presence of multiple clocks. Our primary focus though is to describe in depth circadian rhythms in the light responses of retinal neurons with an emphasis on clock control of rod and cone pathways. We examine evidence that specific biochemical mechanisms produce these daily light response changes. We also discuss evidence for the presence of multiple circadian retinal pathways involving rhythms in neurotransmitter activity, transmitter receptors, metabolism, and pH. We focus on distinct actions of two dopamine receptor systems in the outer retina, a dopamine D4 receptor system that mediates circadian control of rod/cone gap junction coupling and a dopamine D1 receptor system that mediates non-circadian, light/dark adaptive regulation of gap junction coupling between horizontal cells. Finally, we evaluate the role of circadian rhythmicity in retinal degeneration and suggest future directions for the field of retinal circadian biology.


Subject(s)
Circadian Clocks , Circadian Rhythm , Dopamine , Retinal Cone Photoreceptor Cells , Humans , Circadian Clocks/genetics , Circadian Rhythm/physiology , Retina/metabolism , Retinal Cone Photoreceptor Cells/metabolism
3.
Cell Rep ; 39(13): 111003, 2022 06 28.
Article in English | MEDLINE | ID: mdl-35767957

ABSTRACT

Image- and non-image-forming vision are essential for animal behavior. Here we use genetically modified mouse lines to examine retinal circuits driving image- and non-image-functions. We describe the outer retinal circuits underlying the pupillary light response (PLR) and circadian photoentrainment, two non-image-forming behaviors. Rods and cones signal light increments and decrements through the ON and OFF pathways, respectively. We find that the OFF pathway drives image-forming vision but cannot drive circadian photoentrainment or the PLR. Cone light responses drive image formation but fail to drive the PLR. At photopic levels, rods use the primary and secondary rod pathways to drive the PLR, whereas at the scotopic and mesopic levels, rods use the primary pathway to drive the PLR, and the secondary pathway is insufficient. Circuit dynamics allow rod ON pathways to drive two non-image-forming behaviors across a wide range of light intensities, whereas the OFF pathway is potentially restricted to image formation.


Subject(s)
Retinal Ganglion Cells , Rod Opsins , Animals , Circadian Rhythm/physiology , Mice , Retina/metabolism , Retinal Cone Photoreceptor Cells/metabolism , Retinal Ganglion Cells/metabolism , Rod Opsins/metabolism
4.
Elife ; 112022 04 26.
Article in English | MEDLINE | ID: mdl-35471186

ABSTRACT

Electrical coupling, mediated by gap junctions, contributes to signal averaging, synchronization, and noise reduction in neuronal circuits. In addition, gap junctions may also provide alternative neuronal pathways. However, because they are small and especially difficult to image, gap junctions are often ignored in large-scale 3D reconstructions. Here, we reconstruct gap junctions between photoreceptors in the mouse retina using serial blockface-scanning electron microscopy, focused ion beam-scanning electron microscopy, and confocal microscopy for the gap junction protein Cx36. An exuberant spray of fine telodendria extends from each cone pedicle (including blue cones) to contact 40-50 nearby rod spherules at sites of Cx36 labeling, with approximately 50 Cx36 clusters per cone pedicle and 2-3 per rod spherule. We were unable to detect rod/rod or cone/cone coupling. Thus, rod/cone coupling accounts for nearly all gap junctions between photoreceptors. We estimate a mean of 86 Cx36 channels per rod/cone pair, which may provide a maximum conductance of ~1200 pS, if all gap junction channels were open. This is comparable to the maximum conductance previously measured between rod/cone pairs in the presence of a dopamine antagonist to activate Cx36, suggesting that the open probability of gap junction channels can approach 100% under certain conditions.


Neurons can talk to each other in two ways: they can send chemical messengers across specialized junctions between two cells, or they can directly pass electrical signals to one another. This latter process is made possible by gap junctions, a system of channel-like structures which connect neighbouring cells and let ions move between them. In most neurons, gap junction channels are made from a specialized protein called connexin 36. Gap junctions are small, difficult to observe, and therefore often ignored by researchers studying neural circuits. In response, Ishibashi et al. focused on nerve cells in the mouse retina, in particular the cones (which detect color during the day) and the rods (which are essential for night vision). Gap junctions between rods and cones allow them to communicate; for example, they enable rod signals to directly activate cones. This provides an alternative route for rod signaling known as the 'secondary rod pathway', which seems to be open at night and switches to closed around dawn. Both rods and cones only produce connexin 36, so Ishibashi et al. labeled these proteins with fluorescent tags to pinpoint gap junctions. This showed that each cone makes around 50 gap junctions with nearby rods; however, gap junctions were not detected between cells of the same type. In addition, 3D reconstruction helped to establish the length of each gap junction. Further experiments showed that a typical rod was connected to a cone by about 80 connexin 36 channels. Finally, calculations revealed that the gap junction channels would all need to open to account for the level of electrical activity required for the secondary rod pathway. This suggests that gap junctions may be much more active and important than previously thought. The work by Ishibashi et al. provides a new understanding of the number, size and activity of gap junctions in the retina, potentially paving the way to prevent diseases where light-sensing cells degenerate and cause blindness.


Subject(s)
Gap Junctions , Retinal Rod Photoreceptor Cells , Animals , Connexins/metabolism , Gap Junctions/metabolism , Ion Channels/metabolism , Mice , Photoreceptor Cells, Vertebrate/metabolism , Retina/metabolism , Retinal Cone Photoreceptor Cells/physiology , Retinal Rod Photoreceptor Cells/metabolism
5.
Sci Adv ; 8(13): eabm4491, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35363529

ABSTRACT

In the retina, signals originating from rod and cone photoreceptors can reach retinal ganglion cells (RGCs)-the output neurons-through different pathways. However, little is known about the exact sensitivities and operating ranges of these pathways. Previously, we created rod- or cone-specific Cx36 knockout (KO) mouse lines. Both lines are deficient in rod/cone electrical coupling and therefore provide a way to selectively remove the secondary rod pathway. We measured the threshold of the primary rod pathway in RGCs of wild-type mice. Under pharmacological blockade of the primary rod pathway, the threshold was elevated. This secondary component was removed in the Cx36 KOs to unmask the threshold of the third rod pathway, still below cone threshold. In turn, the cone threshold was estimated by several independent methods. Our work defines the functionality of the secondary rod pathway and describes an additive contribution of the different pathways to the retinal output.

6.
Proc Natl Acad Sci U S A ; 119(9)2022 03 01.
Article in English | MEDLINE | ID: mdl-35197287

ABSTRACT

Rhodopsin and cone opsins are essential for light detection in vertebrate rods and cones, respectively. It is well established that rhodopsin is required for rod phototransduction, outer segment disk morphogenesis, and rod viability. However, the roles of cone opsins are less well understood. In this study, we adopted a loss-of-function approach to investigate the physiological roles of cone opsins in mice. We showed that cones lacking cone opsins do not form normal outer segments due to the lack of disk morphogenesis. Surprisingly, cone opsin-deficient cones survive for at least 12 mo, which is in stark contrast to the rapid rod degeneration observed in rhodopsin-deficient mice, suggesting that cone opsins are dispensable for cone viability. Although the mutant cones do not respond to light directly, they maintain a normal dark current and continue to mediate visual signaling by relaying the rod signal through rod-cone gap junctions. Our work reveals a striking difference between the role of rhodopsin and cone opsins in photoreceptor viability.


Subject(s)
Retinal Cone Photoreceptor Cells/metabolism , Retinal Pigments/metabolism , Signal Transduction , Animals , Cone Opsins/genetics , Electroretinography , Light Signal Transduction , Loss of Function Mutation , Mice
7.
Front Cell Neurosci ; 15: 667046, 2021.
Article in English | MEDLINE | ID: mdl-34393723

ABSTRACT

Synaptic signaling complexes are held together by scaffold proteins, each of which is selectively capable of interacting with a number of other proteins. In previous studies of rabbit retina, we found Synapse-Associated Protein-102 (SAP102) and Channel Associated Protein of Synapse-110 (Chapsyn110) selectively localized in the tips of horizontal cell processes at contacts with rod and cone photoreceptors, along with several interacting ion channels. We have examined the equivalent suites of proteins in mouse retina and found similarities and differences. In the mouse retina we identified Chapsyn110 as the scaffold selectively localized in the tips of horizontal cells contacting photoreceptors, with Sap102 more diffusely present. As in rabbit, the inward rectifier potassium channel Kir2.1 was present with Chapsyn110 on the tips of horizontal cell dendrites within photoreceptor invaginations, where it could provide a hyperpolarization-activated current that could contribute to ephaptic signaling in the photoreceptor synapses. Pannexin 1 and Pannexin 2, thought to play a role in ephaptic and/or pH mediated signaling, were present in the outer plexiform layer, but likely not in the horizontal cells. Polyamines regulate many ion channels and control the degree of rectification of Kir2.1 by imposing a voltage-dependent block. During the day polyamine immunolabeling was unexpectedly high in photoreceptor terminals compared to other areas of the retina. This content was significantly lower at night, when polyamine content was predominantly in Müller glia, indicating daily rhythms of polyamine content. Both rod and cone terminals displayed the same rhythm. While polyamine content was not prominent in horizontal cells, if polyamines are released, they may regulate the activity of Kir2.1 channels located in the tips of HCs. The rhythmic change in polyamine content of photoreceptor terminals suggests that a daily rhythm tunes the behavior of suites of ion channels within the photoreceptor synapses.

8.
J Comp Neurol ; 529(5): 1066-1080, 2021 04 01.
Article in English | MEDLINE | ID: mdl-32783205

ABSTRACT

BMAL1 is a core component of the mammalian circadian clockwork. Removal of BMAL1 from the retina significantly affects visual information processing in both rod and cone pathways. To identify potential pathways and/or molecules through which BMAL1 alters signal transmission at the cone pedicle, we performed an RNA-seq differential expression analysis between cone-specific Bmal1 knockout cones (cone-Bmal1-/- ) and wild-type (WT) cones. We found 88 genes differentially expressed. Among these, Complexin3 (Cplx3), a SNARE regulator at ribbon synapses, was downregulated fivefold in the mutant cones. The purpose of this work was to determine whether BMAL1 and/or the cone clock controls CPLX3 protein expression at cone pedicles. We found that CPLX3 expression level was decreased twofold in cone-Bmal1-/- cones. Furthermore, CPLX3 expression was downregulated at night compared to the day in WT cones but remained constitutively low in mutant cones both day and night. The transcript and protein expression levels of Cplx4-the other complexin expressed in cones-were similar in WT and mutant cones; in WT cones, CPLX4 protein level did not change with the time of day. In silico analysis revealed four potential BMAL1:CLOCK binding sites upstream from exon one of Cplx3 and none upstream of exon one of Cplx4. Our results suggest that CPLX3 expression is regulated at the transcriptional level by the cone clock. The modulation of CPLX3 may be a mechanism by which the clock controls the cone synaptic transfer function to second-order cells and thereby impacts retinal signal processing during the day/night cycle.


Subject(s)
Adaptor Proteins, Signal Transducing/physiology , Circadian Clocks/physiology , Nerve Tissue Proteins/physiology , Retinal Cone Photoreceptor Cells/physiology , SNARE Proteins/physiology , ARNTL Transcription Factors/deficiency , ARNTL Transcription Factors/genetics , ARNTL Transcription Factors/physiology , Adaptor Proteins, Vesicular Transport/biosynthesis , Adaptor Proteins, Vesicular Transport/genetics , Animals , Down-Regulation , Female , Male , Mice , Mice, Knockout , Promoter Regions, Genetic/genetics , RNA, Messenger/biosynthesis , RNA, Messenger/genetics , RNA-Seq , Retinal Pigments/genetics , Sensory Rhodopsins/genetics , Signal Transduction/physiology
9.
Sci Adv ; 6(28): eaba7232, 2020 07.
Article in English | MEDLINE | ID: mdl-32832605

ABSTRACT

Mouse photoreceptors are electrically coupled via gap junctions, but the relative importance of rod/rod, cone/cone, or rod/cone coupling is unknown. Furthermore, while connexin36 (Cx36) is expressed by cones, the identity of the rod connexin has been controversial. We report that FACS-sorted rods and cones both express Cx36 but no other connexins. We created rod- and cone-specific Cx36 knockout mice to dissect the photoreceptor network. In the wild type, Cx36 plaques at rod/cone contacts accounted for more than 95% of photoreceptor labeling and paired recordings showed the transjunctional conductance between rods and cones was ~300 pS. When Cx36 was eliminated on one side of the gap junction, in either conditional knockout, Cx36 labeling and rod/cone coupling were almost abolished. We could not detect direct rod/rod coupling, and cone/cone coupling was minor. Rod/cone coupling is so prevalent that indirect rod/cone/rod coupling via the network may account for previous reports of rod coupling.

10.
Invest Ophthalmol Vis Sci ; 61(6): 24, 2020 06 03.
Article in English | MEDLINE | ID: mdl-32531058

ABSTRACT

Purpose: The present study tested the hypothesis that connexin-36 (Cx36) and gap junctions between photoreceptor cells contribute to the circadian rhythm of the photopic electroretinogram (ERG) b-wave amplitude. Methods: Cone-specific disruption of Cx36 was obtained in mice with a floxed Gjd2 gene and human red/green pigment promoter (HRGP)-driven Cre recombinase. Standard ERG, spectral-domain optical coherence tomography (SD-OCT) and histochemical methods were used. Results: HRGPcreGjd2fl/fl mice had a selective reduction in Cx36 protein in the outer plexiform layer; no reduction in Cx36 was observed in the inner plexiform layer. Cx36 disruption had no effect on the number of cones, the thickness of the photoreceptor layer, or the scotopic ERG responses. However, there was a reduction of the photopic ERG circadian rhythm, with b-wave amplitudes in the day and the night locked in the daytime, light-adapted state. In HRGPcreGjd2+/+and Gjd2fl/fl controls, the circadian rhythm of light-adapted ERG persisted, similar to that in wild type mice. Conclusions: Cx36 regulation contributes to the circadian rhythm of light-adapted ERG; in the absence of photoreceptor gap junctions, mice appear to be in a fully light-adapted state regardless of the time of day. The higher amplitudes and reduced circadian regulation of the b-wave of HRGPcreGjd2fl/fl mice may be due to increased synaptic strength at the cone to ON bipolar cell synapse due to electrotonic isolation of the terminals lacking gap junctions.


Subject(s)
Adaptation, Ocular/physiology , Circadian Rhythm/physiology , Connexins/metabolism , Dark Adaptation/physiology , Electroretinography/methods , Retinal Cone Photoreceptor Cells/metabolism , Animals , Gap Junctions , Mice , Mice, Transgenic , Models, Animal , Gap Junction delta-2 Protein
11.
Curr Biol ; 30(1): R18-R20, 2020 01 06.
Article in English | MEDLINE | ID: mdl-31910370

ABSTRACT

Every day and night, the retina undergoes dramatic changes in its physiology and function. The prevailing view is that these daily changes affect the retinal output and thereby visual perception. Recent evidence suggests that modifications in higher-order processing centers, and not in retinal computations, account for variations in visual sensitivity.


Subject(s)
Retina , Vision, Ocular , Animals , Mice , Visual Perception
12.
Front Cell Neurosci ; 14: 605067, 2020.
Article in English | MEDLINE | ID: mdl-33510619

ABSTRACT

Adenosine, a major neuromodulator in the central nervous system (CNS), is involved in a variety of regulatory functions such as the sleep/wake cycle. Because exogenous adenosine displays dark- and night-mimicking effects in the vertebrate retina, we tested the hypothesis that a circadian (24 h) clock in the retina uses adenosine to control neuronal light responses and information processing. Using a variety of techniques in the intact goldfish retina including measurements of adenosine overflow and content, tracer labeling, and electrical recording of the light responses of cone photoreceptor cells and cone horizontal cells (cHCs), which are post-synaptic to cones, we demonstrate that a circadian clock in the retina itself-but not activation of melatonin or dopamine receptors-controls extracellular and intracellular adenosine levels so that they are highest during the subjective night. Moreover, the results show that the clock increases extracellular adenosine at night by enhancing adenosine content so that inward adenosine transport ceases. Also, we report that circadian clock control of endogenous cone adenosine A2A receptor activation increases rod-cone gap junction coupling and rod input to cones and cHCs at night. These results demonstrate that adenosine and A2A receptor activity are controlled by a circadian clock in the retina, and are used by the clock to modulate rod-cone electrical synapses and the sensitivity of cones and cHCs to very dim light stimuli. Moreover, the adenosine system represents a separate circadian-controlled pathway in the retina that is independent of the melatonin/dopamine pathway but which nevertheless acts in concert to enhance the day/night difference in rod-cone coupling.

13.
Methods Mol Biol ; 2092: 221-230, 2020.
Article in English | MEDLINE | ID: mdl-31786792

ABSTRACT

Gap junction-mediated electrical coupling between retinal photoreceptors is an important determinant of photoreceptor function. Yet, quantitative measurements of the junctional conductance between coupled photoreceptors are required to fully assess the effects of coupling on visual performance. Such measurements have been obtained in salamander and other lower vertebrate retinas but are difficult to acquire in mammalian retinas, in part because of the much smaller size of photoreceptors in mammals. Here, we describe in detail a dual whole-cell patch-clamp technique we recently developed to measure the junctional conductance between photoreceptor pairs in the mouse retina. With this method, electrical coupling strength between mouse photoreceptors can be estimated with high accuracy and its impact on retinal processing of visual information further evaluated.


Subject(s)
Photoreceptor Cells, Vertebrate/physiology , Retina/physiology , Retinal Rod Photoreceptor Cells/physiology , Animals , Gap Junctions/physiology , Mice , Patch-Clamp Techniques/methods , Urodela/physiology
14.
Invest Ophthalmol Vis Sci ; 59(12): 4856-4870, 2018 10 01.
Article in English | MEDLINE | ID: mdl-30347082

ABSTRACT

Vision is a highly rhythmic function adapted to the extensive changes in light intensity occurring over the 24-hour day. This adaptation relies on rhythms in cellular and molecular processes, which are orchestrated by a network of circadian clocks located within the retina and in the eye, synchronized to the day/night cycle and which, together, fine-tune detection and processing of light information over the 24-hour period and ensure retinal homeostasis. Systematic or high throughput studies revealed a series of genes rhythmically expressed in the retina, pointing at specific functions or pathways under circadian control. Conversely, knockout studies demonstrated that the circadian clock regulates retinal processing of light information. In addition, recent data revealed that it also plays a role in development as well as in aging of the retina. Regarding synchronization by the light/dark cycle, the retina displays the unique property of bringing together light sensitivity, clock machinery, and a wide range of rhythmic outputs. Melatonin and dopamine play a particular role in this system, being both outputs and inputs for clocks. The retinal cellular complexity suggests that mechanisms of regulation by light are diverse and intricate. In the context of the whole eye, the retina looks like a major determinant of phase resetting for other tissues such as the retinal pigmented epithelium or cornea. Understanding the pathways linking the cell-specific molecular machineries to their cognate outputs will be one of the major challenges for the future.


Subject(s)
Adaptation, Ocular/physiology , Circadian Clocks/physiology , Circadian Rhythm/physiology , Retina/physiology , Animals , CLOCK Proteins/genetics , Dopamine/metabolism , Gene Expression , Humans , Melatonin/metabolism , Ocular Physiological Phenomena
15.
J Pineal Res ; 65(3): e12509, 2018 Oct.
Article in English | MEDLINE | ID: mdl-29768727

ABSTRACT

The C57BL/6J (B6) is the most common inbred mouse strain used in biomedical research in the United States. Yet, this strain is notoriously known for being deficient in the biosynthesis of melatonin, an important effector of circadian clocks in the brain and in the retina. Melatonin deficiency in this strain results from nonfunctional alleles of the genes coding 2 key enzymes of the melatonin synthesis pathway: arylalkylamine-N-acetyltransferase (Aanat) and N-acetylserotonin-O-methyltransferase (Asmt). By introducing functional alleles of the Aanat and Asmt genes from the melatonin-proficient CBA/CaJ (CBA) mouse strain to B6, we have generated a B6 congenic line that has acquired the capacity of rhythmic melatonin synthesis. In addition, the melatonin-dependent rhythm of dopamine release in the retina is restored in the B6 congenic line. Finally, we have partially characterized the Aanat and Asmt genes of the CBA strain and have identified multiple differences between CBA and B6 alleles, including single nucleotide polymorphism and deletion/insertion of DNA segments of various sizes. As an improved model organism with functional components of the melatonin synthesis pathway and melatonin-dependent circadian regulations, the new line will be useful to researchers studying melatonin physiological functions in a variety of fields including, but not limited to, circadian biology and neuroscience. In particular, the congenic line will be useful to speed up introduction of melatonin production capacity into genetically modified mouse lines of interest such as knockout lines, many of which are on B6 or mixed B6 backgrounds. The melatonin-proficient B6 congenic line will be widely distributed.


Subject(s)
Acetylserotonin O-Methyltransferase/metabolism , Arylalkylamine N-Acetyltransferase/metabolism , Melatonin/biosynthesis , Acetylserotonin O-Methyltransferase/genetics , Alleles , Animals , Arylalkylamine N-Acetyltransferase/genetics , Cell Line , Melatonin/genetics , Mice , Mice, Congenic , Mice, Inbred CBA , Species Specificity
16.
Adv Exp Med Biol ; 1074: 345-350, 2018.
Article in English | MEDLINE | ID: mdl-29721962

ABSTRACT

Circadian rhythms are present in most living organisms, and these rhythms are not just a consequence of the day/night fluctuation, but rather they are generated by endogenous biological clocks with a periodicity of about 24 h. In mammals, the master pacemaker of circadian rhythms is localized in the suprachiasmatic nuclei (SCN) of the hypothalamus. The SCN controls circadian rhythms in peripheral organs. The retina also contains circadian clocks which regulate many aspects of retinal physiology, independently of the SCN. Emerging experimental evidence indicates that the retinal circadian clocks also affect ocular health, and a few studies have now demonstrated that disruption of retinal clocks may contribute to the development of retinal diseases. Our study indicates that in mice lacking the clock gene Bmal1, photoreceptor viability during aging is significantly reduced. Bmal1 knockout mice at 8-9 months of age have 20-30% less nuclei in the outer nuclear layer. No differences were observed in the other retinal layers. Our study suggests that the retinal circadian clock is an important modulator of photoreceptor health.


Subject(s)
Aging/physiology , Circadian Clocks/physiology , Circadian Rhythm/physiology , Photoreceptor Cells, Vertebrate/cytology , Retina/physiology , ARNTL Transcription Factors/deficiency , ARNTL Transcription Factors/genetics , Aging, Premature/genetics , Aging, Premature/pathology , Aging, Premature/physiopathology , Animals , Basic Helix-Loop-Helix Transcription Factors/deficiency , CLOCK Proteins/deficiency , Cell Survival , Circadian Clocks/genetics , Gene Expression Regulation , Humans , Mice , Mice, Knockout , Nerve Tissue Proteins/deficiency , Retinal Degeneration/physiopathology , Suprachiasmatic Nucleus/physiology
17.
Sci Rep ; 6: 28916, 2016 06 30.
Article in English | MEDLINE | ID: mdl-27356880

ABSTRACT

Dopamine is a key neurotransmitter in the retina and plays a central role in the light adaptive processes of the visual system. The sole source of retinal dopamine is dopaminergic amacrine cells (DACs). We and others have previously demonstrated that DACs are activated by rods, cones, and intrinsically photosensitive retinal ganglion cells (ipRGCs) upon illumination. However, it is still not clear how each class of photosensitive cells generates light responses in DACs. We genetically isolated cone function in mice to specifically examine the cone-mediated responses of DACs and their neural pathways. In addition to the reported excitatory input to DACs from light-increment (ON) bipolar cells, we found that cones alternatively signal to DACs via a retrograde signalling pathway from ipRGCs. Cones also produce ON and light-decrement (OFF) inhibitory responses in DACs, which are mediated by other amacrine cells, likely driven by type 1 and type 2/3a OFF bipolar cells, respectively. Dye injections indicated that DACs had similar morphological profiles with or without ON/OFF inhibition. Our data demonstrate that cones utilize specific parallel excitatory and inhibitory circuits to modulate DAC activity and efficiently regulate dopamine release and the light-adaptive state of the retina.


Subject(s)
Retinal Ganglion Cells/physiology , 3,4-Dihydroxyphenylacetic Acid/analysis , Amacrine Cells/physiology , Amacrine Cells/radiation effects , Animals , Dopamine/analysis , Immunohistochemistry , Light , Luminescent Proteins/genetics , Luminescent Proteins/metabolism , Membrane Potentials/radiation effects , Mice , Mice, Inbred C57BL , Patch-Clamp Techniques , Retinal Ganglion Cells/pathology , Retinal Ganglion Cells/radiation effects , Red Fluorescent Protein
18.
Invest Ophthalmol Vis Sci ; 57(7): 3047-57, 2016 06 01.
Article in English | MEDLINE | ID: mdl-27281270

ABSTRACT

PURPOSE: Retinal dopamine deficiency is a potential cause of myopia and visual deficits in retinopathy of prematurity (ROP). We investigated the cellular mechanisms responsible for lowered levels of retinal dopamine in an oxygen-induced retinopathy (OIR) mouse model of ROP. METHODS: Retinopathy was induced by exposing mice to 75% oxygen from postnatal day 7 (P7) to P12. Oxygen-induced retinopathy and age-matched control mice were euthanized at P12, P17, P25, or P42 to P50. Immunohistochemistry, electrophysiology, and biochemical approaches were used to determine the effect of OIR on the structure and function of dopaminergic amacrine cells (DACs). RESULTS: The total number of DACs was unchanged in OIR retinas at P12 despite significant capillary dropout in the central retina. However, a significant loss of DACs was observed in P17 OIR retinas (in which neovascularization was maximal), with the cell loss being more profound in the central (avascular) than in the peripheral (neovascular) regions. Cell loss was persistent in both regions at P25, at which time retinal neovascularization had regressed. At P42, the percentage of DACs lost (54%) was comparable to the percent decrease in total dopamine content (53%). Additionally, it was found that DACs recorded in OIR retinas at P42 to P50 had a complete dendritic field and exhibited relatively normal spontaneous and light-induced electrical activity. CONCLUSIONS: The results suggest that remaining DACs are structurally and functionally intact and that loss of DACs is primarily responsible for the decreased levels of retinal dopamine observed after OIR.


Subject(s)
Amacrine Cells/pathology , Amacrine Cells/physiology , Retinal Neovascularization/physiopathology , Analysis of Variance , Animals , Animals, Newborn , Blotting, Western , Disease Models, Animal , Dopamine/metabolism , Immunohistochemistry , Ischemia/physiopathology , Mice , Mice, Inbred C57BL , Oxygen/pharmacology , Retina/physiopathology , Retinal Vessels/physiopathology , Retinopathy of Prematurity/physiopathology
19.
J Neurosci ; 36(1): 178-84, 2016 Jan 06.
Article in English | MEDLINE | ID: mdl-26740659

ABSTRACT

Rod photoreceptors are electrically coupled through gap junctions. Coupling is a key determinant of their light response properties, but whether rod electrical coupling is dynamically regulated remains elusive and controversial. Here, we have obtained direct measurements of the conductance between adjacent rods in mouse retina and present evidence that rod electrical coupling strength is dependent on the time of day, the lighting conditions, and the mouse strain. Specifically, we show in CBA/Ca mice that under circadian conditions, the rod junctional conductance has a median value of 98 pS during the subjective day and of 493 pS during the subjective night. In C57BL/6 mice, the median junctional conductance between dark-adapted rods is ∼140 pS, regardless of the time in the circadian cycle. Adaptation to bright light decreases the rod junctional conductance to ∼0 pS, regardless of the time of day or the mouse strain. Together, these results establish the high degree of plasticity of rod electrical coupling over the course of the day. Estimates of the rod coupling strength will provide a foundation for further investigations of rod interactions and the role of rod coupling in the ability of the visual system to anticipate, assimilate, and respond to the daily changes in ambient light intensity. SIGNIFICANCE STATEMENT: Many cells in the CNS communicate via gap junctions, or electrical synapses, the regulation of which remains largely unknown. Here, we show that the strength of electrical coupling between rod photoreceptors of the retina is regulated by the time of day and the lighting conditions. This mechanism may help us understand some key aspects of day and night vision as well as some visual malfunctions.


Subject(s)
Action Potentials/physiology , Circadian Rhythm/physiology , Gap Junctions/physiology , Nerve Net/physiology , Neuronal Plasticity/physiology , Retinal Rod Photoreceptor Cells/physiology , Animals , Cells, Cultured , Female , Male , Mice , Synaptic Transmission/physiology
20.
Vis Neurosci ; 32: E009, 2015 Jan.
Article in English | MEDLINE | ID: mdl-26241696

ABSTRACT

The gap-junction-forming protein connexin36 (Cx36) represents the anatomical substrate of photoreceptor electrical coupling in mammals. The strength of coupling is directly correlated to the phosphorylation of Cx36 at two regulatory sites: Ser110 and Ser293. Our previous work demonstrated that the extent of biotinylated tracer coupling between photoreceptor cells, which provides an index of the extent of electrical coupling, depends on the mouse strain. In the C57Bl/6J strain, light or dopamine reduces tracer coupling and Cx36 phosphorylation in photoreceptors. Conversely, darkness or a dopaminergic antagonist increases tracer coupling and Cx36 phosphorylation, regardless of the daytime. In the CBA/CaJ strain, photoreceptor tracer coupling is not only regulated by light and dopamine, but also by a circadian clock, a type of oscillator with a period close to 24 h and intrinsic to the retina, so that under prolonged dark-adapted conditions tracer coupling is broader at night compared to daytime. In the current study, we examined whether the modulation of photoreceptor coupling by a circadian clock in the CBA/CaJ mouse photoreceptors reflected a change in Cx36 protein expression and/or phosphorylation. We found no significant change in Cx36 expression or in the number of Cx36 gap junction among the conditions examined. However, we found that Cx36 phosphorylation is higher under dark-adapted conditions at night than in the daytime, and is the lowest under prolonged illumination at any time of the day/night cycle. Our observations are consistent with the view that the circadian clock regulation of photoreceptor electrical coupling is mouse strain-dependent and highlights the critical position of Cx36 phosphorylation in the control of photoreceptor coupling.


Subject(s)
Circadian Clocks/physiology , Connexins/metabolism , Photoreceptor Cells, Vertebrate/physiology , Analysis of Variance , Animals , Cyclic Nucleotide Phosphodiesterases, Type 6/deficiency , Cyclic Nucleotide Phosphodiesterases, Type 6/genetics , Dark Adaptation/genetics , Female , Gap Junctions/genetics , Gap Junctions/physiology , Gene Expression Regulation/genetics , Light , Male , Mice , Mice, Inbred C57BL , Mice, Mutant Strains , Phosphorylation/physiology , Serine/metabolism , Gap Junction delta-2 Protein
SELECTION OF CITATIONS
SEARCH DETAIL
...