Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
World J Microbiol Biotechnol ; 40(7): 207, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38767733

ABSTRACT

Biological pretreatment of wood chips by fungi is a well-known approach prior to mechanical- or chemical pulp production. For this biological approach, a limited number of white-rot fungi with an ability to colonize and selectively degrade lignin are used to pretreat wood chips allowing the remaining cellulose to be processed for further applications. Biopulping is an environmentally friendly technology that can reduce the energy consumption of traditional pulping processes. Fungal pretreatment also reduces the pitch content in the wood chips and improves the pulp quality in terms of brightness, strength, and bleachability. The bleached biopulps are easier to refine compared to pulps produced by conventional methodology. In the last decades, biopulping has been scaled up with pilot trials towards industrial level, with optimization of several intermediate steps and improvement of economic feasibility. Nevertheless, fundamental knowledge on the biochemical mechanisms involved in biopulping is still lacking. Overall, biopulping technology has advanced rapidly during recent decades and pilot mill trials have been implemented. The use of fungi as pretreatment for pulp production is in line with modern circular economy strategies and can be implemented in existing production plants. In this review, we discuss some recent advances in biopulping technology, which can improve mechanical-, chemical-, and organosolv pulping processes along with their mechanisms.


Subject(s)
Cellulose , Fungi , Lignin , Wood , Lignin/metabolism , Fungi/metabolism , Wood/microbiology , Cellulose/metabolism , Biotechnology/methods
2.
Appl Microbiol Biotechnol ; 107(18): 5595-5612, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37477696

ABSTRACT

Trichoderma spp. are a genus of well-known fungi that promote healthy growth and modulate different functions in plants, as well as protect against various plant pathogens. The application of Trichoderma and its propagules as a biological control method can therefore help to reduce the use of chemical pesticides and fertilizers in agriculture. This review critically discusses and analyzes groundbreaking innovations over the past few decades of biotechnological approaches to prepare active formulations containing Trichoderma. The use of various carrier substances is covered, emphasizing their effects on enhancing the shelf life, viability, and efficacy of the final product formulation. Furthermore, the use of processing techniques such as freeze drying, fluidized bed drying, and spray drying are highlighted, enabling the development of stable, light-weight formulations. Finally, promising microencapsulation techniques for maximizing the performance of Trichoderma spp. during application processes are discussed, leading to the next-generation of multi-functional biological control formulations. KEY POINTS: • The development of carrier substances to encapsulate Trichoderma propagules is highlighted. • Advances in biotechnological processes to prepare Trichoderma-containing formulations are critically discussed. • Current challenges and future outlook of Trichoderma-based formulations in the context of biological control are presented.


Subject(s)
Trichoderma , Biotechnology , Plants/microbiology , Desiccation , Pest Control, Biological/methods , Plant Diseases/prevention & control , Plant Diseases/microbiology
3.
Microbiol Spectr ; 10(5): e0304122, 2022 10 26.
Article in English | MEDLINE | ID: mdl-36154147

ABSTRACT

Cocultivation of fungi and algae can result in a mutualistic or antagonistic interaction depending on the species involved and the cultivation conditions. In this study, we investigated the growth behavior and enzymatic activity of two filamentous white-rot fungi (Trametes versicolor and Trametes pubescens) and two freshwater algae (Chlorella vulgaris and Scenedesmus vacuolatus) cocultured in the presence of TEMPO (2,2,6,6-tetramethylpiperidine-1-oxyl radical) oxidized cellulose nanofibrils (CNF) and cellulose nanocrystals (CNC). The growth of fungi and algae was studied in liquid, agar medium, and 3D-printed nanocellulose hydrogels. The results showed that cocultures grew faster under nutrient-rich conditions than in nutrient-depleted conditions. Key cellulose-degrading enzymes, including endoglucanase and laccase activities, were higher in liquid cocultures of T. versicolor and S. vacuolatus in the presence of cellulose compared to single cultures of fungi or algae. Although similar results were observed for cocultures of T. pubescens and C. vulgaris, laccase production diminished over time in these cultures. Fungi and algae were capable of growth in 3D-printed cellulose hydrogels. These results showed that cellulase enzyme production could be enhanced by cocultivating white-rot fungi with freshwater algae under nutrient-rich conditions with TEMPO-CNF and CNC. Additionally, the growth of white-rot fungi and freshwater algae in printed cellulose hydrogels demonstrates the potential use of fungi and algae in hydrogel systems for biotechnological applications, including biofuel production and bio-based fuel cell components. IMPORTANCE Depending on the conditions used to grow fungi and algae in the lab, they can interact in a mutually beneficial or negative way. These interactions could stimulate the organisms to produce enzymes in response to the interaction. We studied how wood decay fungi and freshwater algae grew in the presence and absence of cellulose, one of the basic building blocks of wood. How fungi and algae grew in 3D-printed cellulose hydrogels was also tested. Our results showed that fungi and algae partners produced significantly larger amounts of enzymes that degraded cellulose when grown with cellulose than when grown alone. In addition, fungi and algae were shown to grow in dense nanocellulose hydrogels and could survive the shear conditions during gel structuring while 3D-printing. These cultures could potentially be applied in the biotech industry for applications like energy production from cellulose, biofuel production, and bioremediation of cellulose material.


Subject(s)
Cellulase , Cellulose, Oxidized , Chlorella vulgaris , Microalgae , Laccase , Trametes , Coculture Techniques , Biofuels , Agar , Cellulose , Hydrogels/chemistry , Fungi
4.
Biomacromolecules ; 22(11): 4681-4690, 2021 11 08.
Article in English | MEDLINE | ID: mdl-34696590

ABSTRACT

In recent years, water pollution has developed into a severe environmental and public health problem due to rapid urbanization and industrialization, especially in some developing countries. Finding solutions to tackle water pollution is urgently required and is of global importance. Currently, a range of water treatment methods are available; however, a water remediation process that is simple, inexpensive, eco-friendly, and effective for the removal of pollutants down to ppm/ppb concentrations has long been sought after. Herein, we describe a novel approach using fungal melanin for developing melanized-cationic cellulose nanofiber (melanized-C-CNF) foams that can successfully remove pollutants in water systems. The foam can be recycled several times while retaining its adsorption/desorption property, indicating high practicability for adsorbing the cationic dye crystal violet. This work highlights the opportunity to combine both the advanced features of sustainable polymers such as cellulose and the unique properties of fungal melanin to manufacture biohybrid composites for water purification.


Subject(s)
Nanofibers , Water Pollutants, Chemical , Water Purification , Cellulose , Coloring Agents
5.
Polymers (Basel) ; 13(17)2021 Aug 27.
Article in English | MEDLINE | ID: mdl-34502919

ABSTRACT

Rapid global population growth has led to an exponential increase in the use of disposable materials with a short life span that accumulate in landfills. The use of non-biodegradable materials causes severe damage to the environment worldwide. Polymers derived from agricultural residues, wood, or other fiber crops are fully biodegradable, creating the potential to be part of a sustainable circular economy. Ideally, natural fibers, such as the extremely strong fibers from hemp, can be combined with matrix materials such as the core or hurd from hemp or kenaf to produce a completely renewable biomaterial. However, these materials cannot always meet all of the performance attributes required, necessitating the creation of blends of petroleum-based and renewable material-based composites. This article reviews composites made from natural and biodegradable polymers, as well as the challenges encountered in their production and use.

6.
J Fungi (Basel) ; 7(3)2021 Mar 18.
Article in English | MEDLINE | ID: mdl-33803754

ABSTRACT

White-rot fungi can degrade all lignocellulose components due to their potent lignin and cellulose-degrading enzymes. In this study, five white-rot fungi, Trametes versicolor, Trametes pubescens, Ganoderma adspersum, Ganoderma lipsiense, and Rigidoporus vitreus were tested for endoglucanase, laccase, urease, and glucose-6-phosphate (G6P) production when grown with malt extract and nanocellulose in the form of TEMPO (2,2,6,6-tetramethylpiperidine-1-oxyl radical) oxidized cellulose nanofibrils (CNF) and cellulose nanocrystals (CNC). Results show that temperature plays a key role in controlling the growth of all five fungi when cultured with malt extract alone. Endoglucanase activities were highest in cultures of G. adspersum and G. lipsiense and laccase activities were highest in cultures of T. versicolor and R. vitreus. Urease activities were highest in cultures of G. adspersum, G. lipsiense, and R. vitreus. Glucose-6-phosphate levels also indicate that cells were actively metabolizing glucose present in the cultures. These results show that TEMPO-oxidized CNF and CNC do not inhibit the production of specific lignocellulose enzymes by these white-rot fungi. The apparent lack of enzymatic inhibition makes TEMPO-oxidized CNF and CNC excellent candidates for future biotechnological applications in combination with the white-rot fungi studied here.

7.
Sci Adv ; 7(11)2021 Mar.
Article in English | MEDLINE | ID: mdl-33692104

ABSTRACT

Producing electricity from renewable sources and reducing its consumption by buildings are necessary to meet energy and climate change challenges. Wood is an excellent "green" building material and, owing to its piezoelectric behavior, could enable direct conversion of mechanical energy into electricity. Although this phenomenon has been discovered decades ago, its exploitation as an energy source has been impaired by the ultralow piezoelectric output of native wood. Here, we demonstrate that, by enhancing the elastic compressibility of balsa wood through a facile, green, and sustainable fungal decay pretreatment, the piezoelectric output is increased over 55 times. A single cube (15 mm by 15 mm by 13.2 mm) of decayed wood is able to produce a maximum voltage of 0.87 V and a current of 13.3 nA under 45-kPa stress. This study is a fundamental step to develop next-generation self-powered green building materials for future energy supply and mitigation of climate change.

8.
Microorganisms ; 9(2)2021 Jan 26.
Article in English | MEDLINE | ID: mdl-33530410

ABSTRACT

The biotechnological potential of nine decay fungi collected from stored beech logs at a pulp and paper factory yard in Northern Iran was investigated. Beech blocks exposed to the fungi in a laboratory decay test were used to study changes in cell wall chemistry using both wet chemistry and spectroscopic methods. Pleurotus ostreatus, P. pulmonarius, and Lentinus sajor-caju caused greater lignin breakdown compared to other white-rot fungi, which led to a 28% reduction in refining energy. Trametesversicolor caused the greatest glucan loss, while P. ostreatus and L. sajor-caju were associated with the lowest losses of this sugar. Fourier transform infrared spectroscopy (FTIR) analyses indicated that white-rot fungi caused greater lignin degradation in the cell walls via the oxidation aromatic rings, confirming the chemical analysis. The rate of cellulose and lignin degradation by the T.versicolor and Pleurotus species was high compared to the other decay fungi analyzed in this study. Based on the above information, we propose that, among the fungi tested, P. ostreatus (27.42% lignin loss and 1.58% cellulose loss) and L. sajor-caju (29.92% lignin loss and 5.95% cellulose loss) have the greatest potential for biopulping.

9.
Microorganisms ; 8(12)2020 Dec 04.
Article in English | MEDLINE | ID: mdl-33291813

ABSTRACT

Fungal wood decay strategies are influenced by several factors, such as wood species, moisture content, and temperature. This study aims to evaluate wood degradation characteristics of spruce, beech, and oak after exposure to the white-rot fungi Pleurotusostreatus and Trametesversicolor. Both fungi caused high mass losses in beech wood, while spruce and oak wood were more resistant to decay. The moisture content values of the decayed wood correlated with the mass losses for all three wood species and incubation periods. Combined microscopic and chemical studies indicated that the two fungi differed in their decay behavior. While T. versicolor produced a decay pattern (cell wall erosion) typical of white-rot fungi in all wood species, P. ostreatus caused cell wall erosion in spruce and beech and soft-rot type I (cavity formation) decay in oak wood. These observations suggest that P. ostreatus may have the capacity to produce a wider range of enzymes/radicals triggered by the chemical composition of wood cell walls and/or local compositional variability within the cell wall.

10.
World J Microbiol Biotechnol ; 36(11): 170, 2020 Oct 12.
Article in English | MEDLINE | ID: mdl-33043393

ABSTRACT

Melanins are natural biopolymers that are known to contribute to different biological processes and to protect organisms from adverse environmental conditions. During the past decade, melanins have attracted increasing attention for their use in organic semiconductors and bioelectronics, drug delivery, photoprotection and environmental bioremediation. Although considerable advances in these fields have been achieved, real-world applications of melanins are still scarce, probably due to the limited and expensive source of natural melanin. Nevertheless, recent biotechnological advances have allowed for relatively large-scale production of microbial melanins, which could replace current commercial melanin. In this review, we first describe different melanin sources and highlight the advantages and disadvantages of each production method. Our focus is on the microbial synthesis of melanins, including the methodology and mechanism of melanin formation. Applications of microbial melanins are also discussed, and an outlook on how to push the field forward is discussed.


Subject(s)
Biotechnology , Melanins/biosynthesis , Melanins/chemistry , Bacteria/metabolism , Biopolymers/biosynthesis , Biopolymers/chemistry , Chemical Phenomena , Drug Delivery Systems , Fungi/metabolism , Humans , Molecular Structure
11.
ACS Nano ; 14(11): 14665-14674, 2020 11 24.
Article in English | MEDLINE | ID: mdl-32936611

ABSTRACT

Developing low-cost and biodegradable piezoelectric nanogenerators is of great importance for a variety of applications, from harvesting low-grade mechanical energy to wearable sensors. Many of the most widely used piezoelectric materials, including lead zirconate titanate (PZT), suffer from serious drawbacks such as complicated synthesis, poor mechanical properties (e.g., brittleness), and toxic composition, limiting their development for biomedical applications and posing environmental problems for their disposal. Here, we report a low-cost, biodegradable, biocompatible, and highly compressible piezoelectric nanogenerator based on a wood sponge obtained with a simple delignification process. Thanks to the enhanced compressibility of the wood sponge, our wood nanogenerator (15 × 15 × 14 mm3, longitudinal × radial × tangential) can generate an output voltage of up to 0.69 V, 85 times higher than that generated by native (untreated) wood, and it shows stable performance under repeated cyclic compression (≥600 cycles). Our approach suggests the importance of increased compressibility of bulk materials for improving their piezoelectric output. We demonstrate the versatility of our nanogenerator by showing its application both as a wearable movement monitoring system (made with a single wood sponge) and as a large-scale prototype with increased output (made with 30 wood sponges) able to power simple electronic devices (a LED light, a LCD screen). Moreover, we demonstrate the biodegradability of our wood sponge piezoelectric nanogenerator by studying its decomposition with cellulose-degrading fungi. Our results showcase the potential application of a wood sponge as a sustainable energy source, as a wearable device for monitoring human motions, and its contribution to environmental sustainability by electronic waste reduction.

12.
Ann Bot ; 125(5): 701-720, 2020 04 25.
Article in English | MEDLINE | ID: mdl-31420666

ABSTRACT

BACKGROUND: In trees, secondary metabolites (SMs) are essential for determining the effectiveness of defence systems against fungi and why defences are sometimes breached. Using the CODIT model (Compartmentalization of Damage/Dysfunction in Trees), we explain defence processes at the cellular level. CODIT is a highly compartmented defence system that relies on the signalling, synthesis and transport of defence compounds through a three-dimensional lattice of parenchyma against the spread of decay fungi in xylem. SCOPE: The model conceptualizes 'walls' that are pre-formed, formed during and formed after wounding events. For sapwood, SMs range in molecular size, which directly affects performance and the response times in which they can be produced. When triggered, high-molecular weight SMs such as suberin and lignin are synthesized slowly (phytoalexins), but can also be in place at the time of wounding (phytoanticipins). In contrast, low-molecular weight phenolic compounds such as flavonoids can be manufactured de novo (phytoalexins) rapidly in response to fungal colonization. De novo production of SMs can be regulated in response to fungal pathogenicity levels. The protective nature of heartwood is partly based on the level of accumulated antimicrobial SMs (phytoanticipins) during the transitionary stage into a normally dead substance. Effectiveness against fungal colonization in heartwood is largely determined by the genetics of the host. CONCLUSION: Here we review recent advances in our understanding of the role of SMs in trees in the context of CODIT, with emphasis on the relationship between defence, carbohydrate availability and the hydraulic system.We also raise the limitations of the CODIT model and suggest its modification, encompassing other defence theory concepts. We envisage the development of a new defence system that is modular based and incorporates all components (and organs) of the tree from micro- to macro-scales.


Subject(s)
Trees , Xylem , Fungi , Lignin
13.
J Agric Food Chem ; 67(1): 132-139, 2019 Jan 09.
Article in English | MEDLINE | ID: mdl-30541276

ABSTRACT

Natural melanin features many interesting properties, including the ability to shield electromagnetic radiation, the ability to act as scavenger for radical and reactive oxygen species and the capacity to chelate different metal ions. For these reasons, melanin is becoming increasingly relevant for the development of functional materials with potential applications in cosmetics, drug delivery, and water purification. However, the extraction and purification of melanin from conventional sources (e.g., sepia ink, hair, and wool) is inefficient and not easily scalable, hence diverting its technological applications. Some fungal species, especially wood-decay basidiomycetes, can be regarded as promising sources of melanin. In the present study, we screened different fungi in regard to their melanin-biosynthesis abilities using l-tyrosine as a precursor, and we found that an Armillaria cepistipes strain (Empa 655) produced the highest yield of melanin (27.98 g L-1). Physicochemical characterization of the obtained fungal melanin revealed a typical eumelanin structure. The method for the biosynthesis of fungal melanin we propose is efficient, scalable, and sustainable and has the potential to provide support for further technological exploitation.


Subject(s)
Armillaria/metabolism , Melanins/biosynthesis , Armillaria/chemistry , Armillaria/genetics , Armillaria/growth & development , Culture Media/metabolism , Fermentation , Melanins/chemistry , Melanins/isolation & purification , Tyrosine/metabolism
14.
Nanomaterials (Basel) ; 8(2)2018 Jan 23.
Article in English | MEDLINE | ID: mdl-29360734

ABSTRACT

Meeting the increasing demand of clean water requires the development of novel efficient adsorbent materials for the removal of organic pollutants. In this context the use of natural, renewable sources is of special relevance and sepia melanin, thanks to its ability to bind a variety of organic and inorganic species, has already attracted interest for water purification. Here we describe the synthesis of a material obtained by the combination of sepia melanin and poly(ethylene-alt-maleic anhydride) (P(E-alt-MA)). Compared to sepia melanin, the resulting hybrid displays a high and fast adsorption efficiency towards methylene blue (a common industrial dye) for a wide pH range (from pH 2 to 12) and under high ionic strength conditions. It is easily recovered after use and can be reused up to three times. Given the wide availability of sepia melanin and P(E-alt-MA), the synthesis of our hybrid is simple and affordable, making it suitable for industrial water purification purposes.

15.
PLoS One ; 12(8): e0183004, 2017.
Article in English | MEDLINE | ID: mdl-28797118

ABSTRACT

The gradual elimination of chromium from wood preservative formulations results in higher Cu leaching and increased susceptibility to wood decay fungi. Finding a sustainable strategy in wood protection has become of great interest among researchers. The objective of these in vitro studies was to demonstrate the effect of T-720-enriched organic charcoal (biochar) against five wood decay basidiomycetes isolated from strongly damaged poles. For this purpose, the antagonistic potential of Trichoderma harzianum (strain T-720) was confirmed among other four Trichoderma spp. against five brown-rot basidiomycetes in dual culture tests. T-720 was genetically transformed and tagged with the green fluorescent protein (GFP) in order to study its antagonistic mechanism against wood decay basidiomycetes. It was also demonstrated that T-720 inhibits the oxalic acid production by basidiomycetes, a well-known mechanism used by brown-rot fungi to detoxify Cu from impregnated wood. Additionally, this study evaluated the effect of biochar, alone or in combination with T-720, on Cu leaching by different preservatives, pH stabilization and prevention of wood decay caused by five basidiomycetes. Addition of biochar resulted in a significant Cu binding released from impregnated wood specimens. T-720-enriched biochar showed a significant reduction of wood decay caused by four basidiomycetes. The addition of T-720-enriched biochar to the soil into which utility poles are placed may improve the efficiency of Cr-free wood preservatives.


Subject(s)
Basidiomycota/physiology , Charcoal/metabolism , Microbial Interactions , Trichoderma/physiology , Wood/microbiology , Conservation of Natural Resources , Copper/metabolism , Oxalic Acid/metabolism , Wood/physiology
16.
PLoS One ; 12(4): e0174335, 2017.
Article in English | MEDLINE | ID: mdl-28379978

ABSTRACT

The production of new generation of wood preservatives (without addition of a co-biocide) in combination with an exchange of wood poles on identical sites with high fungal inoculum, has resulted in an increase of premature failures of wood utility poles in the last decades. Wood destroying basidiomycetes inhabiting sites where poles have been installed, have developed resistance against wood preservatives. The objective of the in vitro studies was to identify a Trichoderma spp. with a highly antagonistic potential against wood destroying basidiomycetes that is capable of colonizing Cu-rich environments. For this purpose, the activity of five Trichoderma spp. on Cu-rich medium was evaluated according to its growth and sporulation rates. The influence of the selected Trichoderma spp. on wood colonization and degradation by five wood destroying basidiomycetes was quantitatively analyzed by means of dry weight loss of wood specimens. Furthermore, the preventative effect of the selected Trichoderma spp. in combination with four Cu-based preservatives was also examined by mass loss and histological changes in the wood specimens. Trichoderma harzianum (T-720) was considered the biocontrol agent with higher antagonistic potential to colonize Cu-rich environments (up to 0.1% CuSO4 amended medium). T. harzianum demonstrated significant preventative effect on wood specimens against four wood destroying basidiomycetes. The combined effect of T. harzianum and Cu-based wood preservatives demonstrated that after 9 months incubation with two wood destroying basidiomycetes, wood specimens treated with 3.8 kg m-3 copper-chromium had weight losses between 55-65%, whereas containers previously treated with T. harzianum had significantly lower weight losses (0-25%). Histological studies on one of the wood destroying basidiomycetes revealed typical decomposition of wood cells by brown-rot fungi in Cu-impregnated samples, that were notably absent in wood specimens previously exposed to T. harzianum. It is concluded that carefully selected Trichoderma isolates can be used for integrated wood protection against a range of wood destroying basidiomycetes and may have potential for integrated wood protection in the field.


Subject(s)
Basidiomycota , Pest Control, Biological/methods , Trichoderma , Wood/microbiology , Antifungal Agents/pharmacology , Basidiomycota/drug effects , Basidiomycota/growth & development , Copper/metabolism , Copper/pharmacology , Trichoderma/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...