Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Cancer Cell ; 36(1): 100-114.e25, 2019 07 08.
Article in English | MEDLINE | ID: mdl-31257072

ABSTRACT

Type I protein arginine methyltransferases (PRMTs) catalyze asymmetric dimethylation of arginines on proteins. Type I PRMTs and their substrates have been implicated in human cancers, suggesting inhibition of type I PRMTs may offer a therapeutic approach for oncology. The current report describes GSK3368715 (EPZ019997), a potent, reversible type I PRMT inhibitor with anti-tumor effects in human cancer models. Inhibition of PRMT5, the predominant type II PRMT, produces synergistic cancer cell growth inhibition when combined with GSK3368715. Interestingly, deletion of the methylthioadenosine phosphorylase gene (MTAP) results in accumulation of the metabolite 2-methylthioadenosine, an endogenous inhibitor of PRMT5, and correlates with sensitivity to GSK3368715 in cell lines. These data provide rationale to explore MTAP status as a biomarker strategy for patient selection.


Subject(s)
Antineoplastic Agents/pharmacology , Enzyme Inhibitors/pharmacology , Protein-Arginine N-Methyltransferases/antagonists & inhibitors , Purine-Nucleoside Phosphorylase/deficiency , Alternative Splicing , Antineoplastic Agents/chemistry , Biomarkers , Cell Line, Tumor , Drug Synergism , Enzyme Inhibitors/chemistry , Humans , Methylation , Models, Molecular , Molecular Conformation , Molecular Structure , Protein Binding , Protein-Arginine N-Methyltransferases/chemistry , Substrate Specificity
2.
Sci Rep ; 7(1): 17993, 2017 12 21.
Article in English | MEDLINE | ID: mdl-29269946

ABSTRACT

CARM1 is an arginine methyltransferase with diverse histone and non-histone substrates implicated in the regulation of cellular processes including transcriptional co-activation and RNA processing. CARM1 overexpression has been reported in multiple cancer types and has been shown to modulate oncogenic pathways in in vitro studies. Detailed understanding of the mechanism of action of CARM1 in oncogenesis has been limited by a lack of selective tool compounds, particularly for in vivo studies. We describe the identification and characterization of, to our knowledge, the first potent and selective inhibitor of CARM1 that exhibits anti-proliferative effects both in vitro and in vivo and, to our knowledge, the first demonstration of a role for CARM1 in multiple myeloma (MM). EZM2302 (GSK3359088) is an inhibitor of CARM1 enzymatic activity in biochemical assays (IC50 = 6 nM) with broad selectivity against other histone methyltransferases. Treatment of MM cell lines with EZM2302 leads to inhibition of PABP1 and SMB methylation and cell stasis with IC50 values in the nanomolar range. Oral dosing of EZM2302 demonstrates dose-dependent in vivo CARM1 inhibition and anti-tumor activity in an MM xenograft model. EZM2302 is a validated chemical probe suitable for further understanding the biological role CARM1 plays in cancer and other diseases.


Subject(s)
Antineoplastic Agents/therapeutic use , CARD Signaling Adaptor Proteins/antagonists & inhibitors , Enzyme Inhibitors/therapeutic use , Guanylate Cyclase/antagonists & inhibitors , Isoxazoles/therapeutic use , Multiple Myeloma/drug therapy , Pyrimidines/therapeutic use , Spiro Compounds/therapeutic use , Animals , Antineoplastic Agents/pharmacokinetics , Cell Line, Tumor , Dose-Response Relationship, Drug , Enzyme Inhibitors/pharmacokinetics , Humans , In Vitro Techniques , Isoxazoles/pharmacokinetics , Male , Mice , Neoplasm Transplantation , Pyrimidines/pharmacokinetics , Rats, Sprague-Dawley , Spiro Compounds/pharmacokinetics
3.
Mol Cancer Ther ; 16(11): 2586-2597, 2017 11.
Article in English | MEDLINE | ID: mdl-28835384

ABSTRACT

The EZH2 small-molecule inhibitor tazemetostat (EPZ-6438) is currently being evaluated in phase II clinical trials for the treatment of non-Hodgkin lymphoma (NHL). We have previously shown that EZH2 inhibitors display an antiproliferative effect in multiple preclinical models of NHL, and that models bearing gain-of-function mutations in EZH2 were consistently more sensitive to EZH2 inhibition than lymphomas with wild-type (WT) EZH2 Here, we demonstrate that cell lines bearing EZH2 mutations show a cytotoxic response, while cell lines with WT-EZH2 show a cytostatic response and only tumor growth inhibition without regression in a xenograft model. Previous work has demonstrated that cotreatment with tazemetostat and glucocorticoid receptor agonists lead to a synergistic antiproliferative effect in both mutant and wild-type backgrounds, which may provide clues to the mechanism of action of EZH2 inhibition in WT-EZH2 models. Multiple agents that inhibit the B-cell receptor pathway (e.g., ibrutinib) were found to have synergistic benefit when combined with tazemetostat in both mutant and WT-EZH2 backgrounds of diffuse large B-cell lymphomas (DLBCL). The relationship between B-cell activation and EZH2 inhibition is consistent with the proposed role of EZH2 in B-cell maturation. To further support this, we observe that cell lines treated with tazemetostat show an increase in the B-cell maturation regulator, PRDM1/BLIMP1, and gene signatures corresponding to more advanced stages of maturation. These findings suggest that EZH2 inhibition in both mutant and wild-type backgrounds leads to increased B-cell maturation and a greater dependence on B-cell activation signaling. Mol Cancer Ther; 16(11); 2586-97. ©2017 AACR.


Subject(s)
Benzamides/administration & dosage , Enhancer of Zeste Homolog 2 Protein/genetics , Lymphoma, Large B-Cell, Diffuse/drug therapy , Pyrazoles/administration & dosage , Pyridones/administration & dosage , Pyrimidines/administration & dosage , Adenine/analogs & derivatives , Animals , B-Lymphocytes/drug effects , Biphenyl Compounds , Cell Proliferation/drug effects , DNA Methylation/drug effects , Drug Synergism , Enhancer of Zeste Homolog 2 Protein/antagonists & inhibitors , Gene Expression Regulation, Neoplastic/drug effects , Humans , Lymphoma, Large B-Cell, Diffuse/genetics , Lymphoma, Large B-Cell, Diffuse/pathology , Mice , Morpholines , Mutation , Piperidines , Signal Transduction/drug effects , Xenograft Model Antitumor Assays
4.
Mol Cancer Ther ; 16(5): 850-860, 2017 05.
Article in English | MEDLINE | ID: mdl-28292935

ABSTRACT

The SWI/SNF complex is a major regulator of gene expression and is increasingly thought to play an important role in human cancer, as evidenced by the high frequency of subunit mutations across virtually all cancer types. We previously reported that in preclinical models, malignant rhabdoid tumors, which are deficient in the SWI/SNF core component INI1 (SMARCB1), are selectively killed by inhibitors of the H3K27 histone methyltransferase EZH2. Given the demonstrated antagonistic activities of the SWI/SNF complex and the EZH2-containing PRC2 complex, we investigated whether additional cancers with SWI/SNF mutations are sensitive to selective EZH2 inhibition. It has been recently reported that ovarian cancers with dual loss of the redundant SWI/SNF components SMARCA4 and SMARCA2 are characteristic of a rare rhabdoid-like subtype known as small-cell carcinoma of the ovary hypercalcemic type (SCCOHT). Here, we provide evidence that a subset of commonly used ovarian carcinoma cell lines were misdiagnosed and instead were derived from a SCCOHT tumor. We also demonstrate that tazemetostat, a potent and selective EZH2 inhibitor currently in phase II clinical trials, induces potent antiproliferative and antitumor effects in SCCOHT cell lines and xenografts deficient in both SMARCA2 and SMARCA4. These results exemplify an additional class of rhabdoid-like tumors that are dependent on EZH2 activity for survival. Mol Cancer Ther; 16(5); 850-60. ©2017 AACR.


Subject(s)
Carcinoma, Small Cell/drug therapy , DNA Helicases/genetics , Enhancer of Zeste Homolog 2 Protein/genetics , Nuclear Proteins/genetics , Ovarian Neoplasms/drug therapy , Rhabdoid Tumor/drug therapy , Transcription Factors/genetics , Animals , Carcinoma, Small Cell/diagnosis , Carcinoma, Small Cell/genetics , Carcinoma, Small Cell/pathology , Cell Line, Tumor , Chromosomal Proteins, Non-Histone/genetics , Diagnosis, Differential , Enhancer of Zeste Homolog 2 Protein/antagonists & inhibitors , Female , Gene Expression Regulation, Neoplastic/drug effects , Histone-Lysine N-Methyltransferase/genetics , Humans , Hypercalcemia/diagnosis , Hypercalcemia/drug therapy , Hypercalcemia/genetics , Hypercalcemia/pathology , Mice , Mutation , Ovarian Neoplasms/diagnosis , Ovarian Neoplasms/genetics , Ovarian Neoplasms/pathology , Rhabdoid Tumor/diagnosis , Rhabdoid Tumor/genetics , Rhabdoid Tumor/pathology , Xenograft Model Antitumor Assays
5.
ACS Med Chem Lett ; 6(6): 655-9, 2015 Jun 11.
Article in English | MEDLINE | ID: mdl-26101569

ABSTRACT

A novel aryl pyrazole series of arginine methyltransferase inhibitors has been identified. Synthesis of analogues within this series yielded the first potent, selective, small molecule PRMT6 inhibitor tool compound, EPZ020411. PRMT6 overexpression has been reported in several cancer types suggesting that inhibition of PRMT6 activity may have therapeutic utility. Identification of EPZ020411 provides the field with the first small molecule tool compound for target validation studies. EPZ020411 shows good bioavailability following subcutaneous dosing in rats making it a suitable tool for in vivo studies.

6.
Nat Chem Biol ; 11(6): 432-7, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25915199

ABSTRACT

Protein arginine methyltransferase-5 (PRMT5) is reported to have a role in diverse cellular processes, including tumorigenesis, and its overexpression is observed in cell lines and primary patient samples derived from lymphomas, particularly mantle cell lymphoma (MCL). Here we describe the identification and characterization of a potent and selective inhibitor of PRMT5 with antiproliferative effects in both in vitro and in vivo models of MCL. EPZ015666 (GSK3235025) is an orally available inhibitor of PRMT5 enzymatic activity in biochemical assays with a half-maximal inhibitory concentration (IC50) of 22 nM and broad selectivity against a panel of other histone methyltransferases. Treatment of MCL cell lines with EPZ015666 led to inhibition of SmD3 methylation and cell death, with IC50 values in the nanomolar range. Oral dosing with EPZ015666 demonstrated dose-dependent antitumor activity in multiple MCL xenograft models. EPZ015666 represents a validated chemical probe for further study of PRMT5 biology and arginine methylation in cancer and other diseases.


Subject(s)
Antineoplastic Agents/pharmacology , Isoquinolines/pharmacology , Lymphoma, Mantle-Cell/pathology , Protein-Arginine N-Methyltransferases/antagonists & inhibitors , Pyrimidines/pharmacology , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/therapeutic use , Cell Death/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Crystallography, X-Ray , Dose-Response Relationship, Drug , Humans , Inhibitory Concentration 50 , Isoquinolines/chemistry , Isoquinolines/therapeutic use , Lymphoma, Mantle-Cell/drug therapy , Lymphoma, Mantle-Cell/enzymology , Male , Methylation , Mice, Inbred Strains , Models, Molecular , Molecular Structure , Protein Binding , Pyrimidines/chemistry , Pyrimidines/therapeutic use , Xenograft Model Antitumor Assays , snRNP Core Proteins/metabolism
7.
Mol Cell ; 10(1): 21-33, 2002 Jul.
Article in English | MEDLINE | ID: mdl-12150904

ABSTRACT

A family of mammalian protocadherin (Pcdh) proteins is encoded by three closely linked gene clusters (alpha, beta, and gamma). Multiple alpha and gamma Pcdh mRNAs are expressed in distinct patterns in the nervous system and are generated by alternative pre-mRNA splicing between different "variable" exons and three "constant" exons within each cluster. We show that each Pcdh variable exon is preceded by a promoter and that promoter choice determines which variable exon is included in a Pcdh mRNA. In addition, we provide evidence that alternative splicing of variable exons within a gene cluster occurs via a cis-splicing mechanism. However, virtually every variable exon can engage in trans-splicing with constant exons from another cluster, albeit at a far lower level.


Subject(s)
Alternative Splicing/genetics , Cadherins/genetics , Promoter Regions, Genetic/genetics , RNA Precursors/metabolism , Alleles , Animals , Exons/genetics , Humans , Mice , Protein Isoforms/genetics , Protein Precursors/chemistry , Protein Precursors/genetics , RNA Precursors/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Trans-Splicing/genetics , Transcription, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL
...