Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
STAR Protoc ; 4(4): 102678, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-37910513

ABSTRACT

PySpore is a Python program that tracks the germination of individual bacterial endospores. Here, we present a protocol for segmenting spores and quantifying the germination properties of individual bacterial endospores using PySpore. We describe steps for using GUI-based tools to optimize image processing, annotating data, setting gates, and joining datasets for downstream analyses. We then describe procedures for plotting functionality tools without the user needing to modify the underlying code. For complete details on the use and execution of this protocol, please refer to Ribis et al. (2023).1.


Subject(s)
Image Processing, Computer-Assisted , Spores, Bacterial
2.
mSphere ; 8(4): e0000523, 2023 08 24.
Article in English | MEDLINE | ID: mdl-37338207

ABSTRACT

Clostridioides difficile infections begin when its metabolically dormant spores germinate in response to sensing bile acid germinants alongside amino acid and divalent cation co-germinants in the small intestine. While bile acid germinants are essential for C. difficile spore germination, it is currently unclear whether both co-germinant signals are required. One model proposes that divalent cations, particularly Ca2+, are essential for inducing germination, while another proposes that either co-germinant class can induce germination. The former model is based on the finding that spores defective in releasing large stores of internal Ca2+ in the form of calcium dipicolinic acid (CaDPA) cannot germinate when germination is induced with bile acid germinant and amino acid co-germinant alone. However, since the reduced optical density of CaDPA-less spores makes it difficult to accurately measure their germination, we developed a novel automated, time-lapse microscopy-based germination assay to analyze CaDPA mutant germination at the single-spore level. Using this assay, we found that CaDPA mutant spores germinate in the presence of amino acid co-germinant and bile acid germinant. Higher levels of amino acid co-germinants are nevertheless required to induce CaDPA mutant spores to germinate relative to WT spores because CaDPA released by WT spores during germination can function in a feedforward loop to potentiate the germination of other spores within the population. Collectively, these data indicate that Ca2+ is not essential for inducing C. difficile spore germination because amino acid and Ca2+ co-germinant signals are sensed by parallel signaling pathways. IMPORTANCE Clostridioides difficile spore germination is essential for this major nosocomial pathogen to initiate infection. C. difficile spores germinate in response to sensing bile acid germinant signals alongside co-germinant signals. There are two classes of co-germinant signals: Ca2+ and amino acids. Prior work suggested that Ca2+ is essential for C. difficile spore germination based on bulk population analyses of germinating CaDPA mutant spores. Since these assays rely on optical density to measure spore germination and the optical density of CaDPA mutant spores is reduced relative to WT spores, this bulk assay is limited in its capacity to analyze germination. To overcome this limitation, we developed an automated image analysis pipeline to monitor C. difficile spore germination using time-lapse microscopy. With this analysis pipeline, we demonstrate that, although Ca2+ is dispensable for inducing C. difficile spore germination, CaDPA can function in a feedforward loop to potentiate the germination of neighboring spores.


Subject(s)
Calcium , Clostridioides difficile , Calcium/metabolism , Clostridioides/metabolism , Clostridioides difficile/physiology , Spores, Bacterial/physiology , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Amino Acids/metabolism , Bile Acids and Salts/pharmacology , Bile Acids and Salts/metabolism
3.
mSphere ; 7(3): e0013222, 2022 06 29.
Article in English | MEDLINE | ID: mdl-35638354

ABSTRACT

The bacterial pathogen Clostridioides difficile causes gastroenteritis by producing toxins and transmits disease by making resistant spores. Toxin and spore production are energy-expensive processes that are regulated by multiple transcription factors in response to many environmental inputs. While toxin and sporulation genes are both induced in only a subset of C. difficile cells, the relationship between these two subpopulations remains unclear. To address whether C. difficile coordinates the generation of these subpopulations, we developed a dual-transcriptional-reporter system that allows toxin and sporulation gene expression to be simultaneously visualized at the single-cell level using chromosomally encoded mScarlet and mNeonGreen fluorescent transcriptional reporters. We then adapted an automated image analysis pipeline to quantify toxin and sporulation gene expression in thousands of individual cells under different medium conditions and in different genetic backgrounds. These analyses revealed that toxin and sporulation gene expression rarely overlap during growth on agar plates, whereas broth culture increases this overlap. Our results suggest that certain growth conditions promote a "division of labor" between transmission and virulence gene expression, highlighting how environmental inputs influence these subpopulations. Our data further suggest that the RstA transcriptional regulator skews the population to activate sporulation genes rather than toxin genes. Given that recent work has revealed population-wide heterogeneity for numerous cellular processes in C. difficile, we anticipate that our dual-reporter system will be broadly useful for determining the overlap between these subpopulations. IMPORTANCE Clostridioides difficile is an important nosocomial pathogen that causes severe diarrhea by producing toxins and transmits disease by producing spores. While both processes are crucial for C. difficile disease, only a subset of cells express toxins and/or undergo sporulation. Whether C. difficile coordinates the subset of cells inducing these energy-expensive processes remains unknown. To address this question, we developed a dual-fluorescent-reporter system coupled with an automated image analysis pipeline to rapidly compare the expression of two genes of interest across thousands of cells. Using this system, we discovered that certain growth conditions, particularly growth on agar plates, induce a "division of labor" between toxin and sporulation gene expression. Since C. difficile exhibits phenotypic heterogeneity for numerous vital cellular processes, this novel dual-reporter system will enable future studies aimed at understanding how C. difficile coordinates various subpopulations throughout its infectious disease cycle.


Subject(s)
Bacterial Toxins , Clostridioides difficile , Agar , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Bacterial Toxins/genetics , Bacterial Toxins/metabolism , Clostridioides , Clostridioides difficile/genetics , Gene Expression , Gene Expression Regulation, Bacterial , Spores, Bacterial , Virulence
4.
Nat Microbiol ; 5(1): 166-180, 2020 01.
Article in English | MEDLINE | ID: mdl-31768029

ABSTRACT

Clostridioides (formerly Clostridium) difficile is a leading cause of healthcare-associated infections. Although considerable progress has been made in the understanding of its genome, the epigenome of C. difficile and its functional impact has not been systematically explored. Here, we perform a comprehensive DNA methylome analysis of C. difficile using 36 human isolates and observe a high level of epigenomic diversity. We discovered an orphan DNA methyltransferase with a well-defined specificity, the corresponding gene of which is highly conserved across our dataset and in all of the approximately 300 global C. difficile genomes examined. Inactivation of the methyltransferase gene negatively impacts sporulation, a key step in C. difficile disease transmission, and these results are consistently supported by multiomics data, genetic experiments and a mouse colonization model. Further experimental and transcriptomic analyses suggest that epigenetic regulation is associated with cell length, biofilm formation and host colonization. These findings provide a unique epigenetic dimension to characterize medically relevant biological processes in this important pathogen. This study also provides a set of methods for comparative epigenomics and integrative analysis, which we expect to be broadly applicable to bacterial epigenomic studies.


Subject(s)
Clostridioides difficile/enzymology , Clostridioides difficile/physiology , Clostridioides difficile/pathogenicity , DNA Modification Methylases/metabolism , Epigenesis, Genetic , Animals , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Clostridioides difficile/genetics , Clostridium Infections/microbiology , Cricetinae , DNA Methylation , DNA Modification Methylases/genetics , DNA, Bacterial/genetics , DNA, Bacterial/metabolism , Epigenome , Gene Expression Regulation, Bacterial , Genetic Variation , Genome, Bacterial/genetics , Humans , Mice , Mutation , Nucleotide Motifs , Phylogeny , Regulatory Elements, Transcriptional/genetics , Spores, Bacterial/genetics , Spores, Bacterial/physiology , Substrate Specificity
5.
Mol Microbiol ; 110(3): 370-389, 2018 11.
Article in English | MEDLINE | ID: mdl-30066347

ABSTRACT

Spore formation is essential for the bacterial pathogen and obligate anaerobe, Clostridioides (Clostridium) difficile, to transmit disease. Completion of this process depends on the mother cell engulfing the developing forespore, but little is known about how engulfment occurs in C. difficile. In Bacillus subtilis, engulfment is mediated by a peptidoglycan degradation complex consisting of SpoIID, SpoIIP and SpoIIM, which are all individually required for spore formation. Using genetic analyses, we determined the functions of these engulfment-related proteins along with the putative endopeptidase, SpoIIQ, during C. difficile sporulation. While SpoIID, SpoIIP and SpoIIQ were critical for engulfment, loss of SpoIIM minimally impacted C. difficile spore formation. Interestingly, a small percentage of ∆spoIID and ∆spoIIQ cells generated heat-resistant spores through the actions of SpoIIQ and SpoIID, respectively. Loss of SpoIID and SpoIIQ also led to unique morphological phenotypes: asymmetric engulfment and forespore distortions, respectively. Catalytic mutant complementation analyses revealed that these phenotypes depend on the enzymatic activities of SpoIIP and SpoIID, respectively. Lastly, engulfment mutants mislocalized polymerized coat even though the basement layer coat proteins, SpoIVA and SipL, remained associated with the forespore. Collectively, these findings advance our understanding of several stages during infectious C. difficile spore assembly.


Subject(s)
Clostridioides difficile/enzymology , Clostridioides difficile/growth & development , Endopeptidases/metabolism , Peptidoglycan/metabolism , Phosphoric Monoester Hydrolases/metabolism , Spores, Bacterial/enzymology , Spores, Bacterial/growth & development , Endopeptidases/genetics , Gene Deletion , Hydrolysis , Phosphoric Monoester Hydrolases/genetics
6.
Infect Immun ; 86(7)2018 07.
Article in English | MEDLINE | ID: mdl-29712730

ABSTRACT

The interactions between Klebsiella pneumoniae and the host environment at the site of infection are largely unknown. Pulmonary surfactant serves as an initial point of contact for inhaled bacteria entering the lung and is thought to contain molecular cues that aid colonization and pathogenesis. To gain insight into this ecological transition, we characterized the transcriptional response of K. pneumoniae MGH 78578 to purified pulmonary surfactant. This work revealed changes within the K. pneumoniae transcriptome that likely contribute to host colonization, adaptation, and virulence in vivo Notable transcripts expressed under these conditions include genes involved in capsule synthesis, lipopolysaccharide modification, antibiotic resistance, biofilm formation, and metabolism. In addition, we tested the contributions of other surfactant-induced transcripts to K. pneumoniae survival using engineered isogenic KPPR1 deletion strains in a murine model of acute pneumonia. In these infection studies, we identified the MdtJI polyamine efflux pump and the ProU glycine betaine ABC transporter to be significant mediators of K. pneumoniae survival within the lung and confirmed previous evidence for the importance of de novo leucine synthesis to bacterial survival during infection. Finally, we determined that pulmonary surfactant promoted type 3 fimbria-mediated biofilm formation in K. pneumoniae and identified two surfactant constituents, phosphatidylcholine and cholesterol, that drive this response. This study provides novel insight into the interactions occurring between K. pneumoniae and the host at an important infection site and demonstrates the utility of purified lung surfactant preparations for dissecting host-lung pathogen interactions in vitro.


Subject(s)
Biofilms/drug effects , Klebsiella pneumoniae/drug effects , Pulmonary Surfactants/pharmacology , Amino Acids, Branched-Chain/biosynthesis , Animals , Biogenic Polyamines/physiology , Fimbriae, Bacterial/physiology , Gene Expression Regulation, Bacterial/drug effects , Host-Pathogen Interactions , Klebsiella pneumoniae/pathogenicity , Klebsiella pneumoniae/physiology , Male , Mice , Mice, Inbred C57BL , Virulence/genetics
7.
mSphere ; 2(5)2017.
Article in English | MEDLINE | ID: mdl-28959733

ABSTRACT

The spore-forming bacterial pathogen Clostridium difficile is a leading cause of health care-associated infections in the United States. In order for this obligate anaerobe to transmit infection, it must form metabolically dormant spores prior to exiting the host. A key step during this process is the assembly of a protective, multilayered proteinaceous coat around the spore. Coat assembly depends on coat morphogenetic proteins recruiting distinct subsets of coat proteins to the developing spore. While 10 coat morphogenetic proteins have been identified in Bacillus subtilis, only two of these morphogenetic proteins have homologs in the Clostridia: SpoIVA and SpoVM. C. difficile SpoIVA is critical for proper coat assembly and functional spore formation, but the requirement for SpoVM during this process was unknown. Here, we show that SpoVM is largely dispensable for C. difficile spore formation, in contrast with B. subtilis. Loss of C. difficile SpoVM resulted in modest decreases (~3-fold) in heat- and chloroform-resistant spore formation, while morphological defects such as coat detachment from the forespore and abnormal cortex thickness were observed in ~30% of spoVM mutant cells. Biochemical analyses revealed that C. difficile SpoIVA and SpoVM directly interact, similarly to their B. subtilis counterparts. However, in contrast with B. subtilis, C. difficile SpoVM was not essential for SpoIVA to encase the forespore. Since C. difficile coat morphogenesis requires SpoIVA-interacting protein L (SipL), which is conserved exclusively in the Clostridia, but not the more broadly conserved SpoVM, our results reveal another key difference between C. difficile and B. subtilis spore assembly pathways. IMPORTANCE The spore-forming obligate anaerobe Clostridium difficile is the leading cause of antibiotic-associated diarrheal disease in the United States. When C. difficile spores are ingested by susceptible individuals, they germinate within the gut and transform into vegetative, toxin-secreting cells. During infection, C. difficile must also induce spore formation to survive exit from the host. Since spore formation is essential for transmission, understanding the basic mechanisms underlying sporulation in C. difficile could inform the development of therapeutic strategies targeting spores. In this study, we determine the requirement of the C. difficile homolog of SpoVM, a protein that is essential for spore formation in Bacillus subtilis due to its regulation of coat and cortex formation. We observed that SpoVM plays a minor role in C. difficile spore formation, in contrast with B. subtilis, indicating that this protein would not be a good target for inhibiting spore formation.

SELECTION OF CITATIONS
SEARCH DETAIL
...