Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
1.
Biochem Res Int ; 2024: 3649912, 2024.
Article in English | MEDLINE | ID: mdl-38939361

ABSTRACT

Eg5 is a protein encoded by KIF11 gene and is primarily involved in correct mitotic cell division. It is also involved in nonmitotic processes such as polypeptide synthesis, protein transport, and angiogenesis. The scientific literature sheds light on the ubiquitous functions of KIF11 and its involvement in the onset and progression of different pathologies. This review focuses attention on two main points: (1) the correlation between Eg5 and cancer and (2) the involvement of Eg5 in noncancerous conditions. Regarding the first point, several tumors revealed an overexpression of this kinesin, thus pushing to look for new Eg5 inhibitors for clinical practice. In addition, the evaluation of Eg5 expression represents a crucial step, as its overexpression could predict a poor prognosis for cancer patients. Referring to the second point, in specific pathological conditions, the reduced activity of Eg5 can be one of the causes of pathological onset. This is the case of Alzheimer's disease (AD), in which Aß and Tau work as Eg5 inhibitors, or in acquired immune deficiency syndrome (AIDS), in which Tat-mediated Eg5 determines the loss of CD4+ T-lymphocytes. Reduced Eg5 activity, due to mutations of KIF11 gene, is also responsible for pathological conditions such as microcephaly with or without chorioretinopathy, lymphedema, or intellectual disability (MCLRI) and familial exudative vitreous retinopathy (FEVR). In conclusion, this review highlights the double impact that overexpression or loss of function of Eg5 could have in the onset and progression of different pathological situations. This emphasizes, on one hand, a possible role of Eg5 as a potential biomarker and new target in cancer and, on the other hand, the promotion of Eg5 expression/activity as a new therapeutic strategy in different noncancerous diseases.

2.
Neuropharmacology ; 256: 110003, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-38789078

ABSTRACT

Neuromodulation such as deep brain stimulation (DBS) is advancing as a clinical intervention in several neurological and neuropsychiatric disorders, including Parkinson's disease, dystonia, tremor, and obsessive-compulsive disorder (OCD) for which DBS is already applied to alleviate severely afflicted individuals of symptoms. Tourette syndrome and drug addiction are two additional disorders for which DBS is in trial or proposed as treatment. However, some major remaining obstacles prevent this intervention from reaching its full therapeutic potential. Side-effects have been reported, and not all DBS-treated individuals are relieved of their symptoms. One major target area for DBS electrodes is the subthalamic nucleus (STN) which plays important roles in motor, affective and associative functions, with impact on for example movement, motivation, impulsivity, compulsivity, as well as both reward and aversion. The multifunctionality of the STN is complex. Decoding the anatomical-functional organization of the STN could enhance strategic targeting in human patients. The STN is located in close proximity to zona incerta (ZI) and the para-subthalamic nucleus (pSTN). Together, the STN, pSTN and ZI form a highly heterogeneous and clinically important brain area. Rodent-based experimental studies, including opto- and chemogenetics as well as viral-genetic tract tracings, provide unique insight into complex neuronal circuitries and their impact on behavior with high spatial and temporal precision. This research field has advanced tremendously over the past few years. Here, we provide an inclusive review of current literature in the pre-clinical research fields centered around STN, pSTN and ZI in laboratory mice and rats; the three highly heterogeneous and enigmatic structures brought together in the context of relevance for treatment strategies. Specific emphasis is placed on methods of manipulation and behavioral impact.


Subject(s)
Deep Brain Stimulation , Mental Disorders , Subthalamic Nucleus , Zona Incerta , Subthalamic Nucleus/physiology , Animals , Deep Brain Stimulation/methods , Zona Incerta/physiology , Mental Disorders/therapy , Humans , Nervous System Diseases/therapy , Rodentia
3.
Cell Commun Signal ; 22(1): 277, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38755629

ABSTRACT

INTRODUCTION: Bcl-2 and Bcl-xL are the most studied anti-apoptotic members of Bcl-2 family proteins. We previously characterized both of them, not only for their role in regulating apoptosis and resistance to therapy in cancer cells, but also for their non-canonical functions, mainly including promotion of cancer progression, metastatization, angiogenesis, and involvement in the crosstalk among cancer cells and components of the tumor microenvironment. Our goal was to identify transcriptional signature and novel cellular pathways specifically modulated by Bcl-2. METHODS: We performed RNAseq analysis of siRNA-mediated transient knockdown of Bcl-2 or Bcl-xL in human melanoma cells and gene ontology analysis to identify a specific Bcl-2 transcriptional signature. Expression of genes modulated by Bcl-2 and associated to Hippo pathway were validated in human melanoma, breast adenocarcinoma and non-small cell lung cancer cell lines by qRT-PCR. Western blotting analysis were performed to analyse protein expression of upstream regulators of YAP and in relation to different level of Bcl-2 protein. The effects of YAP silencing in Bcl-2 overexpressing cancer cells were evaluated in migration and cell viability assays in relation to different stiffness conditions. In vitro wound healing assays and co-cultures were used to evaluate cancer-specific Bcl-2 ability to activate fibroblasts. RESULTS: We demonstrated the Bcl-2-dependent modulation of Hippo Pathway in cancer cell lines from different tumor types by acting on upstream YAP regulators. YAP inhibition abolished the ability of Bcl-2 to increase tumor cell migration and proliferation on high stiffness condition of culture, to stimulate in vitro fibroblasts migration and to induce fibroblasts activation. CONCLUSIONS: We discovered that Bcl-2 regulates the Hippo pathway in different tumor types, promoting cell migration, adaptation to higher stiffness culture condition and fibroblast activation. Our data indicate that Bcl-2 inhibitors should be further investigated to counteract cancer-promoting mechanisms.


Subject(s)
Cell Movement , Hippo Signaling Pathway , Protein Serine-Threonine Kinases , Proto-Oncogene Proteins c-bcl-2 , Humans , Cell Line, Tumor , Proto-Oncogene Proteins c-bcl-2/metabolism , Proto-Oncogene Proteins c-bcl-2/genetics , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/genetics , Cell Movement/genetics , Signal Transduction , Transcription Factors/metabolism , Transcription Factors/genetics , Gene Expression Regulation, Neoplastic , YAP-Signaling Proteins/metabolism , YAP-Signaling Proteins/genetics , bcl-X Protein/metabolism , bcl-X Protein/genetics , Cell Proliferation , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/genetics , Fibroblasts/metabolism
4.
Mol Immunol ; 170: 99-109, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38643690

ABSTRACT

Macrophage polarization towards the M1 phenotype under bacterial product-related exposure (LPS) requires a rapid change in gene expression patterns and cytokine production along with a metabolic rewiring. Metabolic pathways and redox reactions are such tightly connected, giving rise to an area of research referred to as immunometabolism. A role in this context has been paid to the master redox-sensitive regulator Nuclear factor erythroid 2-related factor 2 (Nrf2) and to the 5'-ectonucleotidase CD73, a marker related to macrophage metabolism rearrangement under pro-inflammatory conditions. In this light, a cell model of LPS-stimulated macrophages has been established and nine 4,7-dihydro-4-ethylpyrazolo[l,5-a]pyrimidin-7-ones with a potential anti-inflammatory effect have been administered. Our data highlight that two selected compounds (namely, 5 and 8) inhibit the LPS-induced Nrf2 nuclear translocation and ameliorate the activity rate of the antioxidant enzyme catalase. Additionally, the pyridine-containing compound (8) promotes the shift from the pro-inflammatory immunophenotype M1 to the pro-resolving M2 one, by downregulating CD80 and iNOS and by enhancing CD163 and TGFß1 expression. Most importantly, CD73 is modulated by these compounds as well as the lactate production. Our data demonstrate that pyrazolo[l,5-a]pyrimidine derivatives are effective as anti-inflammatory compounds. Furthermore, these pyrazolo[l,5-a]pyrimidines exert their action via CD73-related signaling and modulation of cell metabolism of activated macrophages.


Subject(s)
5'-Nucleotidase , Inflammation , Macrophages , NF-E2-Related Factor 2 , Animals , Humans , Mice , 5'-Nucleotidase/drug effects , 5'-Nucleotidase/metabolism , Anti-Inflammatory Agents/pharmacology , Inflammation/metabolism , Inflammation/drug therapy , Lipopolysaccharides/pharmacology , Macrophage Activation/drug effects , Macrophages/drug effects , Macrophages/metabolism , Macrophages/immunology , NF-E2-Related Factor 2/metabolism , Pyrimidines/pharmacology , Pyrimidinones/pharmacology , RAW 264.7 Cells
5.
Expert Rev Mol Diagn ; 24(1-2): 49-66, 2024.
Article in English | MEDLINE | ID: mdl-38334382

ABSTRACT

INTRODUCTION: Over the past two years, the scientific community has witnessed an exponential growth in research focused on identifying prognostic biomarkers for melanoma, both in pre-clinical and clinical settings. This surge in studies reflects the need of developing effective prognostic indicators in the field of melanoma. AREAS COVERED: The aim of this work is to review the scientific literature on the most recent findings on the development or validation of prognostic biomarkers in melanoma, in the attempt of providing both clinicians and researchers with an updated broad synopsis of prognostic biomarkers in cutaneous melanoma. EXPERT OPINION: While the field of prognostic biomarkers in melanoma appears promising, there are several complexities and limitations to address. The interdependence of clinical, histological, and molecular features requires accurate classification of different biomarker families. Correlation does not imply causation, and adjustments for confounding factors are often overlooked. In this scenario, large-scale studies based on high-quality clinical trial data can provide more reliable evidence. It is essential to avoid oversimplification by focusing on a single biomarker, as the interactions among multiple factors contribute to define the disease course and patient's outcome. Furthermore, implementing well-supported evidence in real-life settings can help advance prognostic biomarker research in melanoma.


Subject(s)
Melanoma , Skin Neoplasms , Humans , Melanoma/diagnosis , Skin Neoplasms/diagnosis , Prognosis , Biomarkers, Tumor , Proto-Oncogene Proteins B-raf , Biomarkers
6.
Virchows Arch ; 484(2): 181-194, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37658995

ABSTRACT

Molecular profiling has transformed the diagnostic workflow of CNS tumors during the last years. The latest WHO classification of CNS tumors (5th edition), published in 2021, pushed forward the integration between histopathological features and molecular hallmarks to achieve reproducible and clinically relevant diagnoses. To address these demands, pathologists have to appropriately deal with multiple molecular assays mainly including DNA methylation profiling and DNA/RNA next generation sequencing. Tumor classification by DNA methylation profiling is now a critical tool for many diagnostic tasks in neuropathology including the assessment of complex cases, to evaluate novel tumor types and to perform tumor subgrouping in hetereogenous entities like medulloblastoma or ependymoma. DNA/RNA NGS allow the detection of multiple molecular alterations including single nucleotide variations, small insertions/deletions (InDel), and gene fusions. These molecular markers can provide key insights for diagnosis, for example, if a tumor-specific mutation is detected, but also for treatment since targeted therapies are progressively entering the clinical practice. In the present review, a brief, but comprehensive overview of these tools will be provided, discussing their technical specifications, diagnostic value, and potential limitations. Moreover, the importance of molecular profiling will be shown in a representative series of CNS neoplasms including both the most frequent tumor types and other selected entities for which molecular characterization plays a critical role.


Subject(s)
Brain Neoplasms , Central Nervous System Neoplasms , Humans , Central Nervous System Neoplasms/diagnosis , Central Nervous System Neoplasms/genetics , Central Nervous System Neoplasms/therapy , Mutation , Base Sequence , DNA , RNA , Brain Neoplasms/genetics
7.
J Clin Med ; 12(21)2023 Oct 28.
Article in English | MEDLINE | ID: mdl-37959285

ABSTRACT

Psoriasis is a chronic inflammatory skin disease whose molecular mechanisms and microenvironment are poorly understood. We performed gene expression analysis through the nCounter® PanCancer Immune Profiling Panel (NanoString Technologies, Seattle, WA, USA) on 22 FFPE punch biopsies from 19 psoriasis-affected patients. A subset of five cases was analyzed before (T0) and after 6 months (T6) of treatment with dimethyl fumarate (DMF) to address immune microenvironment changes. Molecular comparisons according to biopsy site and age of onset showed a different distribution of innate immune cells (mast cells, macrophages, NK cells, and DC cells) and pathways (complement regulation and transporter functions). The analysis according to PASI (Psoriasis Area and Severity Index) led to non-significant results, suggesting no link between molecular expression profile and clinical amount of skin disease. In DMF-treated patients, we observed a strong immunomodulatory effect after treatment: A subversion of exhausted CD8 T cells, NK CD56dim cells, Tregs, neutrophils, CD45+ cells, T cells, B cells, and macrophages was reported between the two analyzed time-points, as well as the reduction in pro-inflammatory pathways and molecules, including cytotoxicity, pathogen defense, antigen processing, adhesion, cell cycle, chemokines, cytokines, and interleukins. The inflammatory psoriatic microenvironment can be modulated using DMF with encouraging results, achieving an immune-tolerant and non-inflammatory condition through the regulation of both innate and adaptive immunity.

8.
Cell Rep ; 42(11): 113328, 2023 11 28.
Article in English | MEDLINE | ID: mdl-37925641

ABSTRACT

The subthalamic nucleus (STN) is critical for behavioral control; its dysregulation consequently correlated with neurological and neuropsychiatric disorders, including Parkinson's disease. Deep brain stimulation (DBS) targeting the STN successfully alleviates parkinsonian motor symptoms. However, low mood and depression are affective side effects. STN is adjoined with para-STN, associated with appetitive and aversive behavior. DBS aimed at STN might unintentionally modulate para-STN, causing aversion. Alternatively, the STN mediates aversion. To investigate causality between STN and aversion, affective behavior is addressed using optogenetics in mice. Selective promoters allow dissociation of STN (e.g., Pitx2) vs. para-STN (Tac1). Acute photostimulation results in aversion via both STN and para-STN. However, only STN stimulation-paired cues cause conditioned avoidance and only STN stimulation interrupts on-going sugar self-administration. Electrophysiological recordings identify post-synaptic responses in pallidal neurons, and selective photostimulation of STN terminals in the ventral pallidum replicates STN-induced aversion. Identifying STN as a source of aversive learning contributes neurobiological underpinnings to emotional affect.


Subject(s)
Deep Brain Stimulation , Parkinson Disease , Parkinsonian Disorders , Subthalamic Nucleus , Animals , Mice , Avoidance Learning , Deep Brain Stimulation/methods , Parkinson Disease/therapy
9.
Cancers (Basel) ; 15(18)2023 Sep 18.
Article in English | MEDLINE | ID: mdl-37760591

ABSTRACT

Brain metastases (BMs) represent the most frequent metastatic event in the course of lung cancer patients, occurring in approximately 50% of patients with non-small-cell lung cancer (NSCLC) and in up to 70% in patients with small-cell lung cancer (SCLC). Thus far, many advances have been made in the diagnostic and therapeutic procedures, allowing improvements in the prognosis of these patients. The modern approach relies on the integration of several factors, such as accurate histological and molecular profiling, comprehensive assessment of clinical parameters and precise definition of the extent of intracranial and extracranial disease involvement. The combination of these factors is pivotal to guide the multidisciplinary discussion and to offer the most appropriate treatment to these patients based on a personalized approach. Focal radiotherapy (RT), in all its modalities (radiosurgery (SRS), fractionated stereotactic radiotherapy (SRT), adjuvant stereotactic radiotherapy (aSRT)), is the cornerstone of BM management, either alone or in combination with surgery and systemic therapies. We review the modern therapeutic strategies available to treat lung cancer patients with brain involvement. This includes an accurate review of the different technical solutions which can be exploited to provide a "state-of-art" focal RT and also a detailed description of the systemic agents available as effective alternatives to SRS/SRT when a targetable molecular driver is present. In addition to the validated treatment options, we also discuss the future perspective for focal RT, based on emerging clinical reports (e.g., SRS for patients with many BMs from NSCLC or SRS for BMs from SCLC), together with a presentation of innovative and promising findings in translational research and the combination of novel targeted agents with SRS/SRT.

10.
Curr Oncol ; 30(5): 4767-4778, 2023 05 05.
Article in English | MEDLINE | ID: mdl-37232817

ABSTRACT

BACKGROUND: Coronavirus disease-19 (COVID-19) has spread worldwide since December 2019 and was officially declared a pandemic in March 2020. Due to the rapid transmission and the high fatality rate, drastic emergency restrictions were issued, with a negative impact on routine clinical activities. In particular, in Italy, many authors have reported a reduction in the number of breast cancer diagnoses and critical problems in the management of patients who accessed the breast units during the dramatic first months of the pandemic. Our study aims to analyze the global impact of COVID-19 in the two years of the pandemic (2020-2021) on the surgical management of breast cancer by comparing them with the previous two years. METHODS: In our retrospective study, we analyzed all cases of breast cancer diagnosed and surgically treated at the breast unit of "Città della Salute e della Scienza" in Turin, Italy, making a comparison between the 2018-2019 pre-pandemic period and the 2020-2021 pandemic period. RESULTS: We included in our analysis 1331 breast cancer cases surgically treated from January 2018 to December 2021. A total of 726 patients were treated in the pre-pandemic years and 605 in the pandemic period (-121 cases, 9%). No significant differences were observed regarding diagnosis (screening vs. no screening) and timing between radiological diagnosis and surgery for both in situ and invasive tumors. There were no variations in the breast surgical approach (mastectomy vs. conservative surgery), while a reduction in axillary dissection compared to the sentinel lymph node in the pandemic period was observed (p-value < 0.001). Regarding the biological characteristics of breast cancers, we observed a greater number of grades 2-3 (p-value = 0.007), pT stage 3-4 breast cancer surgically treated without previous neoadjuvant chemotherapy (p-value = 0.03), and a reduction in luminal B tumors (p-value = 0.007). CONCLUSIONS: Overall, we report a limited reduction in surgical activity for breast cancer treatment considering the entire pandemic period (2020-2021). These results suggest a prompt resumption of surgical activity similar to the pre-pandemic period.


Subject(s)
Breast Neoplasms , COVID-19 , Humans , Female , COVID-19/epidemiology , Breast Neoplasms/epidemiology , Breast Neoplasms/surgery , Breast Neoplasms/pathology , Mastectomy , Pandemics/prevention & control , Retrospective Studies
11.
Histopathology ; 83(1): 126-136, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37071062

ABSTRACT

AIMS: The current criteria for surgical treatment after endoscopic resection of a pT1 colorectal carcinoma (CRC) are unsatisfactory because nodal involvement is rarely present. This study investigates the correlation between PD-L1 expression and nodal metastasis in pT1 CRCs to enable its use for tailoring surgical treatment after endoscopic removal. METHODS AND RESULTS: Histopathological features of 81 surgically resected pT1 CRC, 19 metastatic and 62 non-metastatic cases were assessed. PD-L1 expression was evaluated by immunohistochemistry (clone 22C3) and independently assessed by two pathologists using tumour proportion score (TPS), combined positive score (CPS) and immune cell score (ICS). The correlation between PD-L1 expression and nodal metastasis, the optimal cut-off values, interobserver agreement and impact upon patients' surgical management were determined. PD-L1 expression in terms of CPS and ICS independently correlated with lymph node metastasis (PD-L1CPS : OR = -2.5, 95% CI = -4.11 to -0.97, P = 0.008 and PD-L1ICS : OR = -1.85, 95% CI = -2.90 to -0.79, P = 0.004) and < 1.2 CPS and <1.3% ICS were identified as the optimal cut-off values to discriminate between metastatic and non-metastatic patients. In our cohort, the implementation of these cut-off values would have avoided a significant rate of unnecessary surgeries in pN0 patients (PD-L1CPS = 43.2; PD-L1ICS = 51.9%). Ultimately, PD-L1 evaluation showed good interpathologist concordance in absolute terms [PD-L1CPS interclass correlation coefficient (ICC) = 0.91; PD-L1ICS ICC = 0.793] and using the identified cut-off values (PD-L1CPS ICC = 0.848; PD-L1ICS ICC = 0.756). CONCLUSIONS: Our study shows that PD-L1 expression is an effective predictor of nodal status and could improve patient selection for surgery after endoscopic removal of pT1 CRCs.


Subject(s)
B7-H1 Antigen , Colorectal Neoplasms , Humans , B7-H1 Antigen/metabolism , Immunohistochemistry , Lymphatic Metastasis , Pathologists , Biomarkers, Tumor , Colorectal Neoplasms/surgery , Colorectal Neoplasms/pathology
12.
Molecules ; 28(3)2023 Jan 26.
Article in English | MEDLINE | ID: mdl-36770889

ABSTRACT

Snail slime (SS) is a viscous secretion obtained from different snail species. SS composition is variable according to factors such as the extraction method. Even if several papers have been published regarding this topic, the molecular mechanisms at the base of SS biological effects remain unexplored. Thus, the aim of this study is to evaluate the capability of SS, extracted with the cruelty-free Muller method, to promote viability and angiogenesis processes and, in parallel, to counteract inflammation occurrence on skin cell populations. SS was administered to keratinocytes, macrophages and fibroblasts, then cell viability, through 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) test, cytotoxicity by lactate dehydrogenase (LDH) assay, morphology by haematoxylin-eosin staining, gene and protein expression through real-time polymerase chain reaction (PCR) and Western blot, cell cycle phases by flow cytometry, and collagen secretion using an enzyme-linked immunosorbent assay (ELISA) test, were measured. Our results evidence SS capability to promote fibroblast viability and to trigger recovery mechanisms by activating the Erk protein. Moreover, an appreciable anti-inflammatory effect due to the significant reduction in cyclooxygenase-2 expression, and a positive modulation of new blood vessel formation demonstrated by increased Angiopoietin 1 gene expression and a higher matrix deposition (evidenced by the augmented amount of released collagen I) can be identified. This evidence led us to assume that the Muller method extracted-SS represents a valuable and promising natural product suitable for cosmetic and skin care formulations.


Subject(s)
Collagen Type I , Collagen , Animals , Collagen/metabolism , Collagen Type I/metabolism , Snails , Inflammation/metabolism , Fibroblasts/metabolism , Cell Survival
13.
Int J Mol Sci ; 24(4)2023 Feb 07.
Article in English | MEDLINE | ID: mdl-36834684

ABSTRACT

Recently, there has been an increasing interest in finding new approaches to manage oral wound healing. Although resveratrol (RSV) exhibited many biological properties, such as antioxidant and anti-inflammatory activities, its use as a drug is limited by unfavorable bioavailability. This study aimed to investigate a series of RSV derivatives (1a-j) with better pharmacokinetic profiles. At first, their cytocompatibility at different concentrations was tested on gingival fibroblasts (HGFs). Among them, derivatives 1d and 1h significantly increased cell viability compared to the reference compound RSV. Thus, 1d and 1h were investigated for cytotoxicity, proliferation, and gene expression in HGFs, endothelial cells (HUVECs), and oral osteoblasts (HOBs), which are the main cells involved in oral wound healing. For HUVECs and HGFs, the morphology was also evaluated, while for HOBs ALP and mineralization were observed. The results showed that both 1d and 1h did not exert negative effects on cell viability, and at a lower concentration (5 µM) both even significantly enhanced the proliferative rate, compared to RSV. The morphology observations pointed out that the density of HUVECs and HGFs was promoted by 1d and 1h (5 µM) and mineralization was promoted in HOBs. Moreover, 1d and 1h (5 µM) induced a higher eNOS mRNA level in HUVECs, higher COL1 mRNA in HGFs, and higher OCN in HOBs, compared to RSV. The appreciable physicochemical properties and good enzymatic and chemical stability of 1d and 1h, along with their promising biological properties, provide the scientific basis for further studies leading to the development of RSV-based agents useful in oral tissue repair.


Subject(s)
Endothelial Cells , Fibroblasts , Resveratrol/pharmacology , Cells, Cultured , Fibroblasts/metabolism , Wound Healing , RNA, Messenger/metabolism
14.
Int J Mol Sci ; 24(2)2023 Jan 10.
Article in English | MEDLINE | ID: mdl-36674856

ABSTRACT

MDM2 amplification represents the leading oncogenic pathway and diagnostic hallmark of liposarcoma, whose assessment is based on Fluorescence In Situ Hybridization (FISH) analysis. Despite its diagnostic relevance, no univocal interpretation criteria regarding FISH assessments of MDM2 amplification have been established so far, leading to several different approaches and potential diagnostic misinterpretations. This study aims to address the most common issues and proposes troubleshooting guidelines for MDM2 amplification assessments by FISH. We retrospectively retrieved 51 liposarcomas, 25 Lipomas, 5 Spindle Cell Lipoma/Pleomorphic Lipomas, and 2 Atypical Spindle Cell Lipomatous Tumors and the corresponding MDM2 FISH analysis. We observed MDM2 amplification in liposarcomas cases only (43 out of 51 cases) and identified three MDM2-amplified patterns (scattered (50% of cases), clustered (14% of cases), and mixed (36% of cases)) and two nonamplified patterns (low number of signals (82% of cases) and polysomic (18% of cases)). Based on these data and published evidence in the literature, we propose a set of criteria to guide MDM2 amplification analysis in liposarcoma. Kindled by the compelling importance of MDM2 assessments to improve diagnostic and therapeutic liposarcoma management, these suggestions could represent the first step to develop a univocal interpretation model and consensus guidelines.


Subject(s)
Lipoma , Liposarcoma , Humans , Gene Amplification , In Situ Hybridization, Fluorescence , Retrospective Studies , Proto-Oncogene Proteins c-mdm2/genetics , Proto-Oncogene Proteins c-mdm2/metabolism , Liposarcoma/diagnosis , Liposarcoma/genetics , Liposarcoma/pathology , Biomarkers, Tumor/metabolism
15.
Pathologica ; 114(6): 436-446, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36534422

ABSTRACT

Ependymal neoplasms are a heterogenous group of neoplasms arising from the progenitors of the cells lining the ventricular system and the spinal central canal. During the last few years, significant novel data concerning oncogenesis, molecular characteristics and clinical correlations of these tumours have been collected, with a strong relevance for their pathological classification. The recently published 5th edition of WHO Classification of Central Nervous System Tumours integrates this novel knowledge and represents a substantial update compared to the previous edition. Concerning supratentorial ependymomas, the previous RELA fusion-positive ependymoma has been renamed into ZFTA fusion-positive and the novel YAP1 fusion-positive ependymoma subtype has been added. Posterior fossa ependymomas should now be allocated either to the Type A or Type B subtypes based on molecular profiling or using the H3 K27me3 immunohistochemical surrogate. Regarding spinal ependymomas, a novel subtype has been added based on a distinctive molecular trait, presence of MYCN amplification, and on the unfavourable outcome. Finally, myxopapillary ependymoma is now classified as a grade 2 tumour in accordance with its overall prognosis which mirrors that of conventional spinal ependymomas. The aim of this review is to present these changes and summarize the current diagnostic framework of ependymal tumours, according to the most recent updates.


Subject(s)
Ependymoma , Humans , Ependymoma/diagnosis , Ependymoma/pathology , Prognosis
16.
J Pers Med ; 12(12)2022 Dec 13.
Article in English | MEDLINE | ID: mdl-36556278

ABSTRACT

The aim of this systematic review was to report the evidence on optimal prandial timing of insulin bolus in youths with type 1 diabetes. A systematic search was performed including studies published in the last 20 years (2002-2022). A PICOS framework was used in the selection process and evidence was assessed using the GRADE system. Up to one third of children and adolescents with type 1 diabetes injected rapid-acting insulin analogues after a meal. Moderate-high level quality studies showed that a pre-meal bolus compared with a bolus given at the start or after the meal was associated with a lower peak blood glucose after one to two hours, particularly after breakfast, as well as with reduced HbA1c, without any difference in the frequency of hypoglycemia. There were no differences related to the timing of bolus in total daily insulin and BMI, although these results were based on a single study. Data on individuals' treatment satisfaction were limited but did not show any effect of timing of bolus on quality of life. In addition, post-prandial administration of fast-acting analogues was superior to rapid-acting analogues on post-prandial glycemia. There was no evidence for any difference in outcomes related to the timing of insulin bolus across age groups in the two studies. In conclusion, prandial insulin injected before a meal, particularly at breakfast, provides better post-prandial glycemia and HbA1c without increasing the risk of hypoglycemia, and without affecting total daily insulin dose and BMI. For young children who often have variable eating behaviors, fast-acting analogues administered at mealtime or post-meal could provide an additional advantage.

17.
Int J Mol Sci ; 23(21)2022 Nov 01.
Article in English | MEDLINE | ID: mdl-36362104

ABSTRACT

Natural products have attracted attention due to their safety and potential effectiveness as anti-inflammatory drugs. Particularly, xanthones owning a unique 9H-xanthen-9-one scaffold, are endowed with a large diversity of medical applications, including antioxidant and anti-inflammatory activities, because their core accommodates a vast variety of substituents at different positions. Among others, α- and γ-mangostin are the major known xanthones purified from Garcinia mangostana with demonstrated anti-inflammatory and antioxidant effects by in vitro and in vivo modulation of the Nrf2 (nuclear factor erythroid-derived 2-like 2) pathway. However, the main mechanism of action of xanthones and their derivatives is still only partially disclosed, and further investigations are needed to improve their potential clinical outcomes. In this light, a library of xanthone derivatives was synthesized and biologically evaluated in vitro on human macrophages under pro-inflammatory conditions. Furthermore, structure-activity relationship (SAR) studies were performed by means of matched molecular pairs (MMPs). The data obtained revealed that the most promising compounds in terms of biocompatibility and counteraction of cytotoxicity are the ones that enhance the Nrf2 translocation, confirming a tight relationship between the xanthone scaffold and the Nrf2 activation as a sign of intracellular cell response towards oxidative stress and inflammation.


Subject(s)
NF-E2-Related Factor 2 , Xanthones , Humans , Anti-Inflammatory Agents/pharmacology , Antioxidants/pharmacology , Macrophages , Oxidative Stress , Xanthones/pharmacology
18.
Biology (Basel) ; 11(10)2022 Oct 02.
Article in English | MEDLINE | ID: mdl-36290354

ABSTRACT

Breast cancer (BC) is one of the most diagnosed cancers in women. Recently, a promising target for BC treatment was found in kinesin Eg5, a mitotic motor protein that allows bipolar spindle formation and cell replication. Thus, the aim of this work was to evaluate the effects of novel thiadiazoline-based Eg5 inhibitors, analogs of K858, in an in vitro model of BC (MCF7 cell line). Compounds 2 and 41 were selected for their better profile as they reduce MCF7 viability at lower concentrations and with minimal effect on non-tumoral cells with respect to K858. Compounds 2 and 41 counteract MCF7 migration by negatively modulating the NF-kB/MMP-9 pathway. The expression of HIF-1α and VEGF appeared also reduced by 2 and 41 administration, thus preventing the recruitment of the molecular cascade involved in angiogenesis promotion. In addition, 2 provokes an increased caspase-3 activation thus triggering the MCF7 apoptotic event, while 41 and K858 seem to induce the necrosis axis, as disclosed by the increased expression of PARP. These results allow us to argue that 2 and 41 are able to simultaneously intervene on pivotal molecular signaling involved in breast cancer progression, leading to the assumption that Eg5 inhibition can represent a valid approach to counteract BC progression.

19.
Genes (Basel) ; 13(8)2022 08 12.
Article in English | MEDLINE | ID: mdl-36011350

ABSTRACT

The G105G SNP (rs11554137) in the IDH1 gene is observed in about 10-15% of patients with a diffuse glioma. Data regarding its impact on gliomas are poor and partially conflicting, possibly due to the evolving classification of CNS tumors. The aim of this study was to investigate the G105G SNP prognostic significance in a homogenous cohort of IDH-wildtype glioblastomas, in agreement with the 2021 WHO classification. The study analyzed 211 patients by collecting several clinico-pathological and molecular characteristics, including the age, lesion localization, number of involved lobes, type of surgical treatment, disease outcome and MGMT promoter methylation status. PFS and DSS curves were plotted according to the Kaplan-Meier method and statistical analyses were performed using parametric and non-parametric tests. A total of 32 patients out of 211 (15.2%) were found to be G105G SNP carriers. No significant impact of the IDH1 G105G SNP on patients' outcomes was observed in terms of PFS and DSS, while MGMT promoter methylation and gross total resection resulted as key prognostic factors in our cohort as expected. No prognostic impact of the IDH1 G105G SNP was detected in this strict cohort of IDH-wildtype glioblastomas. Analysis of larger cohorts is warranted to address the sample size limitations.


Subject(s)
Brain Neoplasms , Glioblastoma , Glioma , Polymorphism, Single Nucleotide , Brain Neoplasms/genetics , Brain Neoplasms/pathology , Glioblastoma/genetics , Glioma/genetics , Humans , Isocitrate Dehydrogenase/genetics , Mutation , Prognosis
20.
Materials (Basel) ; 15(6)2022 Mar 17.
Article in English | MEDLINE | ID: mdl-35329679

ABSTRACT

Due to its exceptional physical properties, such as high electronic conductivity, good thermal stability, excellent mechanical strength, and chemical versatility, graphene has sparked a lot of interest in the scientific community for various applications. It has therefore been employed as an antibacterial agent, in photothermal therapy (PTT) and biosensors, in gene delivery systems, and in tissue engineering for regenerative purposes. Since it was first discovered in 1947, different graphene derivatives have been synthetized from pristine graphene. The most adaptable derivate is graphene oxide (GO). Owing to different functional groups, the amphiphilic structure of GO can interact with cells and exogenous or endogenous growth/differentiation factors, allowing cell adhesion, growth, and differentiation. When GO is used as a coating for scaffolds and nanomaterials, it has been found to enhance bone, chondrogenic, cardiac, neuronal, and skin regeneration. This review focuses on the applications of graphene-based materials, in particular GO, as a coating for scaffolds in bone and chondrogenic tissue engineering and summarizes the most recent findings. Moreover, novel developments on the immunomodulatory properties of GO are reported.

SELECTION OF CITATIONS
SEARCH DETAIL
...