Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 63
Filter
Add more filters










Publication year range
1.
Sci Data ; 11(1): 416, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38653806

ABSTRACT

Our sense of hearing is mediated by cochlear hair cells, of which there are two types organized in one row of inner hair cells and three rows of outer hair cells. Each cochlea contains 5-15 thousand terminally differentiated hair cells, and their survival is essential for hearing as they do not regenerate after insult. It is often desirable in hearing research to quantify the number of hair cells within cochlear samples, in both pathological conditions, and in response to treatment. Machine learning can be used to automate the quantification process but requires a vast and diverse dataset for effective training. In this study, we present a large collection of annotated cochlear hair-cell datasets, labeled with commonly used hair-cell markers and imaged using various fluorescence microscopy techniques. The collection includes samples from mouse, rat, guinea pig, pig, primate, and human cochlear tissue, from normal conditions and following in-vivo and in-vitro ototoxic drug application. The dataset includes over 107,000 hair cells which have been identified and annotated as either inner or outer hair cells. This dataset is the result of a collaborative effort from multiple laboratories and has been carefully curated to represent a variety of imaging techniques. With suggested usage parameters and a well-described annotation procedure, this collection can facilitate the development of generalizable cochlear hair-cell detection models or serve as a starting point for fine-tuning models for other analysis tasks. By providing this dataset, we aim to give other hearing research groups the opportunity to develop their own tools with which to analyze cochlear imaging data more fully, accurately, and with greater ease.


Subject(s)
Cochlea , Animals , Mice , Guinea Pigs , Humans , Rats , Swine , Hair Cells, Auditory , Microscopy, Fluorescence , Machine Learning
2.
Nat Methods ; 21(1): 132-141, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38129618

ABSTRACT

Multiphoton microscopy can resolve fluorescent structures and dynamics deep in scattering tissue and has transformed neural imaging, but applying this technique in vivo can be limited by the mechanical and optical constraints of conventional objectives. Short working distance objectives can collide with compact surgical windows or other instrumentation and preclude imaging. Here we present an ultra-long working distance (20 mm) air objective called the Cousa objective. It is optimized for performance across multiphoton imaging wavelengths, offers a more than 4 mm2 field of view with submicrometer lateral resolution and is compatible with commonly used multiphoton imaging systems. A novel mechanical design, wider than typical microscope objectives, enabled this combination of specifications. We share the full optical prescription, and report performance including in vivo two-photon and three-photon imaging in an array of species and preparations, including nonhuman primates. The Cousa objective can enable a range of experiments in neuroscience and beyond.


Subject(s)
Coloring Agents , Microscopy, Fluorescence, Multiphoton , Animals , Microscopy, Fluorescence, Multiphoton/methods
3.
bioRxiv ; 2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37693382

ABSTRACT

Our sense of hearing is mediated by cochlear hair cells, localized within the sensory epithelium called the organ of Corti. There are two types of hair cells in the cochlea, which are organized in one row of inner hair cells and three rows of outer hair cells. Each cochlea contains a few thousands of hair cells, and their survival is essential for our perception of sound because they are terminally differentiated and do not regenerate after insult. It is often desirable in hearing research to quantify the number of hair cells within cochlear samples, in both pathological conditions, and in response to treatment. However, the sheer number of cells along the cochlea makes manual quantification impractical. Machine learning can be used to overcome this challenge by automating the quantification process but requires a vast and diverse dataset for effective training. In this study, we present a large collection of annotated cochlear hair-cell datasets, labeled with commonly used hair-cell markers and imaged using various fluorescence microscopy techniques. The collection includes samples from mouse, human, pig and guinea pig cochlear tissue, from normal conditions and following in-vivo and in-vitro ototoxic drug application. The dataset includes over 90'000 hair cells, all of which have been manually identified and annotated as one of two cell types: inner hair cells and outer hair cells. This dataset is the result of a collaborative effort from multiple laboratories and has been carefully curated to represent a variety of imaging techniques. With suggested usage parameters and a well-described annotation procedure, this collection can facilitate the development of generalizable cochlear hair cell detection models or serve as a starting point for fine-tuning models for other analysis tasks. By providing this dataset, we aim to supply other groups within the hearing research community with the opportunity to develop their own tools with which to analyze cochlear imaging data more fully, accurately, and with greater ease.

4.
J Cell Sci ; 136(10)2023 05 15.
Article in English | MEDLINE | ID: mdl-37096733

ABSTRACT

GIPC3 has been implicated in auditory function. Here, we establish that GIPC3 is initially localized to the cytoplasm of inner and outer hair cells of the cochlea and then is increasingly concentrated in cuticular plates and at cell junctions during postnatal development. Early postnatal Gipc3KO/KO mice had mostly normal mechanotransduction currents, but had no auditory brainstem response at 1 month of age. Cuticular plates of Gipc3KO/KO hair cells did not flatten during development as did those of controls; moreover, hair bundles were squeezed along the cochlear axis in mutant hair cells. Junctions between inner hair cells and adjacent inner phalangeal cells were also severely disrupted in Gipc3KO/KO cochleas. GIPC3 bound directly to MYO6, and the loss of MYO6 led to altered distribution of GIPC3. Immunoaffinity purification of GIPC3 from chicken inner ear extracts identified co-precipitating proteins associated with adherens junctions, intermediate filament networks and the cuticular plate. Several of immunoprecipitated proteins contained GIPC family consensus PDZ-binding motifs (PBMs), including MYO18A, which bound directly to the PDZ domain of GIPC3. We propose that GIPC3 and MYO6 couple to PBMs of cytoskeletal and cell junction proteins to shape the cuticular plate.


Subject(s)
Mechanotransduction, Cellular , PDZ Domains , Mice , Animals , Hair Cells, Auditory, Inner/metabolism , Cytoskeleton/metabolism , Hair Cells, Auditory, Outer/metabolism , Adaptor Proteins, Signal Transducing/metabolism , Myosins/genetics , Myosins/metabolism
5.
bioRxiv ; 2023 Mar 01.
Article in English | MEDLINE | ID: mdl-36909580

ABSTRACT

GIPC3 has been implicated in auditory function. Initially localized to the cytoplasm of inner and outer hair cells of the cochlea, GIPC3 increasingly concentrated in cuticular plates and at cell junctions during postnatal development. Early postnatal Gipc3 KO/KO mice had mostly normal mechanotransduction currents, but had no auditory brainstem response at one month of age. Cuticular plates of Gipc3 KO/KO hair cells did not flatten during development as did those of controls; moreover, hair bundles were squeezed along the cochlear axis in mutant hair cells. Junctions between inner hair cells and adjacent inner phalangeal cells were also severely disrupted in Gipc3 KO/KO cochleas. GIPC3 bound directly to MYO6, and the loss of MYO6 led to altered distribution of GIPC3. Immunoaffinity purification of GIPC3 from chicken inner ear extracts identified co-precipitating proteins associated with adherens junctions, intermediate filament networks, and the cuticular plate. Several of immunoprecipitated proteins contained GIPC-family consensus PDZ binding motifs (PBMs), including MYO18A, which binds directly to the PDZ domain of GIPC3. We propose that GIPC3 and MYO6 couple to PBMs of cytoskeletal and cell-junction proteins to shape the cuticular plate. Summary statement: The PDZ-domain protein GIPC3 couples the molecular motors MYO6 and MYO18A to actin cytoskeleton structures in hair cells. GIPC3 is necessary for shaping the hair cell’s cuticular plate and hence the arrangement of the stereocilia in the hair bundle.

6.
J Neurosci ; 43(12): 2053-2074, 2023 03 22.
Article in English | MEDLINE | ID: mdl-36746628

ABSTRACT

The hair bundle is the universal mechanosensory organelle of auditory, vestibular, and lateral-line systems. A bundle comprises mechanically coupled stereocilia, whose displacements in response to stimulation activate a receptor current. The similarity of stereociliary displacements within a bundle regulates fundamental properties of the receptor current like its speed, magnitude, and sensitivity. However, the dynamics of individual stereocilia from the mammalian cochlea in response to a known bundle stimulus has not been quantified. We developed a novel high-speed system, which dynamically stimulates and tracks individual inner-hair-cell stereocilia from male and female rats. Stimulating two to three of the tallest stereocilia within a bundle (nonuniform stimulation) caused dissimilar stereociliary displacements. Stereocilia farther from the stimulator moved less, but with little delay, implying that there is little slack in the system. Along the axis of mechanical sensitivity, stereocilium displacements peaked and reversed direction in response to a step stimulus. A viscoelastic model explained the observed displacement dynamics, which implies that coupling between the tallest stereocilia is effectively viscoelastic. Coupling elements between the tallest inner-hair-cell stereocilia were two to three times stronger than elements anchoring stereocilia to the surface of the cell but were 100-10,000 times weaker than those of a well-studied noncochlear hair bundle. Coupling was too weak to ensure that stereocilia move similarly in response to nonuniform stimulation at auditory frequencies. Our results imply that more uniform stimulation across the tallest stereocilia of an inner-hair-cell bundle in vivo is required to ensure stereociliary displacement similarity, increasing the speed, sensitivity, and magnitude of the receptor current.SIGNIFICANCE STATEMENT Generation of the receptor current of the hair cell is the first step in electrically encoding auditory information in the hearing organs of all vertebrates. The receptor current is shaped by mechanical coupling between stereocilia in the hair bundle of each hair cell. Here, we provide foundational information on the mechanical coupling between stereocilia of cochlear inner-hair cells. In contrast to other types of hair cell, coupling between inner-hair-cell stereocilia is weak, causing slower, smaller, and less sensitive receptor currents in response to stimulation of few, rather than many, stereocilia. Our results imply that inner-hair cells need many stereocilia to be stimulated in vivo to ensure fast, large, and sensitive receptor currents.


Subject(s)
Hair Cells, Vestibular , Stereocilia , Rats , Female , Male , Animals , Stereocilia/metabolism , Hair Cells, Auditory, Inner , Hair Cells, Auditory/physiology , Hearing/physiology , Mammals
7.
Nat Protoc ; 18(4): 1137-1154, 2023 04.
Article in English | MEDLINE | ID: mdl-36599963

ABSTRACT

In vivo and real-time multicellular imaging enables the decoding of sensory circuits and the tracking of systemic drug uptake. However, in vivo imaging of the auditory periphery remains technically challenging owing to the deep location, mechanosensitivity and fluid-filled, bone-encased nature of the cochlear structure. Existing methods that expose the cochlea invariably cause irreversible damage to auditory function, severely limiting the experimental measurements possible in living animals. Here we present an in vivo surgical protocol that permits the imaging of cochlear cells in hearing mice. Our protocol describes a ventro-lateral approach for preserving external and middle ear structures while performing surgery, the correct mouse positioning for imaging cochlear cells with effective sound transmission into the ear, the chemo-mechanical cochleostomy for creating the imaging window in the otic capsule bone that prevents intracochlear fluid leakage by maintaining an intact endosteum, and the release of intracochlear pressure that separates the endosteum from the otic capsule bone while creating an imaging window. The procedure thus preserves hearing thresholds. Individual inner and outer hair cells, supporting cells and nerve fibers can be visualized in vivo while hearing function is preserved. This approach may enable future original investigations, such as the real-time tracking of ototoxic drug transport into the cochleae. The technique may be applied to the monitoring of sound-evoked functional activity in multiple cochlear cells, in combination with optogenetic tools, and may help to improve cochlear implantation in humans. The cochleostomy takes ~1 h and requires experience in surgery.


Subject(s)
Cochlear Implantation , Hearing Loss , Humans , Animals , Mice , Cochlea , Hearing , Cochlear Implantation/adverse effects , Cochlear Implantation/methods
8.
Mol Cell Neurosci ; 120: 103722, 2022 05.
Article in English | MEDLINE | ID: mdl-35341941

ABSTRACT

Aminoglycosides are potent antibiotics that are commonly prescribed worldwide. Their use carries significant risks of ototoxicity by directly causing inner ear hair cell degeneration. Despite their ototoxic side effects, there are currently no approved antidotes. Here we review recent advances in our understanding of aminoglycoside ototoxicity, mechanisms of drug transport, and promising sites for intervention to prevent ototoxicity.


Subject(s)
Aminoglycosides , Ototoxicity , Aminoglycosides/toxicity , Anti-Bacterial Agents/adverse effects , Humans
9.
Proc Natl Acad Sci U S A ; 119(9)2022 03 01.
Article in English | MEDLINE | ID: mdl-35197290

ABSTRACT

Aminoglycosides (AGs) are commonly used antibiotics that cause deafness through the irreversible loss of cochlear sensory hair cells (HCs). How AGs enter the cochlea and then target HCs remains unresolved. Here, we performed time-lapse multicellular imaging of cochlea in live adult hearing mice via a chemo-mechanical cochleostomy. The in vivo tracking revealed that systemically administered Texas Red-labeled gentamicin (GTTR) enters the cochlea via the stria vascularis and then HCs selectively. GTTR uptake into HCs was completely abolished in transmembrane channel-like protein 1 (TMC1) knockout mice, indicating mechanotransducer channel-dependent AG uptake. Blockage of megalin, the candidate AG transporter in the stria vascularis, by binding competitor cilastatin prevented GTTR accumulation in HCs. Furthermore, cilastatin treatment markedly reduced AG-induced HC degeneration and hearing loss in vivo. Together, our in vivo real-time tracking of megalin-dependent AG transport across the blood-labyrinth barrier identifies new therapeutic targets for preventing AG-induced ototoxicity.


Subject(s)
Anti-Bacterial Agents/metabolism , Gentamicins/metabolism , Low Density Lipoprotein Receptor-Related Protein-2/metabolism , Animals , Anti-Bacterial Agents/toxicity , Biological Transport , Cilastatin/pharmacology , Endolymph/metabolism , Gentamicins/toxicity , Hair Cells, Auditory/drug effects , Hair Cells, Auditory/metabolism , Hearing/drug effects , Low Density Lipoprotein Receptor-Related Protein-2/antagonists & inhibitors , Mice , Stria Vascularis/metabolism
10.
J Cell Biol ; 221(4)2022 04 04.
Article in English | MEDLINE | ID: mdl-35175278

ABSTRACT

The stereocilia rootlet is a key structure in vertebrate hair cells, anchoring stereocilia firmly into the cell's cuticular plate and protecting them from overstimulation. Using superresolution microscopy, we show that the ankyrin-repeat protein ANKRD24 concentrates at the stereocilia insertion point, forming a ring at the junction between the lower and upper rootlets. Annular ANKRD24 continues into the lower rootlet, where it surrounds and binds TRIOBP-5, which itself bundles rootlet F-actin. TRIOBP-5 is mislocalized in Ankrd24KO/KO hair cells, and ANKRD24 no longer localizes with rootlets in mice lacking TRIOBP-5; exogenous DsRed-TRIOBP-5 restores endogenous ANKRD24 to rootlets in these mice. Ankrd24KO/KO mice show progressive hearing loss and diminished recovery of auditory function after noise damage, as well as increased susceptibility to overstimulation of the hair bundle. We propose that ANKRD24 bridges the apical plasma membrane with the lower rootlet, maintaining a normal distribution of TRIOBP-5. Together with TRIOBP-5, ANKRD24 organizes rootlets to enable hearing with long-term resilience.


Subject(s)
Microfilament Proteins/metabolism , Nuclear Proteins/metabolism , Stereocilia/metabolism , Animals , Cell Membrane/metabolism , Cytoplasm/metabolism , HEK293 Cells , Hair Cells, Auditory/metabolism , Hair Cells, Auditory/pathology , HeLa Cells , Hearing Loss/pathology , Humans , Mice, Inbred C57BL , Mice, Knockout , Nuclear Proteins/chemistry , Protein Aggregates , Protein Binding , Protein Domains , Stereocilia/ultrastructure
11.
Front Cell Dev Biol ; 9: 725101, 2021.
Article in English | MEDLINE | ID: mdl-34513845

ABSTRACT

Hair cell mechanosensitivity resides in the sensory hair bundle, an apical protrusion of actin-filled stereocilia arranged in a staircase pattern. Hair bundle deflection activates mechano-electric transduction (MET) ion channels located near the tops of the shorter rows of stereocilia. The elicited macroscopic current is shaped by the hair bundle motion so that the mode of stimulation greatly influences the cell's output. We present data quantifying the displacement of the whole outer hair cell bundle using high-speed imaging when stimulated with a fluid jet. We find a spatially non-uniform stimulation that results in splaying, where the hair bundle expands apart. Based on modeling, the splaying is predominantly due to fluid dynamics with a small contribution from hair bundle architecture. Additionally, in response to stimulation, the hair bundle exhibited a rapid motion followed by a slower motion in the same direction (creep) that is described by a double exponential process. The creep is consistent with originating from a linear passive system that can be modeled using two viscoelastic processes. These viscoelastic mechanisms are integral to describing the mechanics of the mammalian hair bundle.

12.
Commun Biol ; 4(1): 958, 2021 08 11.
Article in English | MEDLINE | ID: mdl-34381157

ABSTRACT

In vertebrate hearing organs, mechanical vibrations are converted to ionic currents through mechanoelectrical-transduction (MET) channels. Concerted stereocilia motion produces an ensemble MET current driving the hair-cell receptor potential. Mammalian cochleae are unique in that the tuning of sensory cells is determined by their mechanical environment and the mode of hair-bundle stimulation that their environment creates. However, little is known about the in situ intra-hair-bundle motions of stereocilia relative to one another, or to their environment. In this study, high-speed imaging allowed the stereocilium and cell-body motions of inner hair cells to be monitored in an ex vivo organ of Corti (OoC) mouse preparation. We have found that the OoC rotates about the base of the inner pillar cell, the hair bundle rotates about its base and lags behind the motion of the apical surface of the cell, and the individual stereocilia move semi-independently within a given hair bundle.


Subject(s)
Hair Cells, Auditory, Inner/physiology , Stapes/physiology , Stereocilia/metabolism , Animals , Female , Male , Mice
13.
STAR Protoc ; 2(3): 100637, 2021 09 17.
Article in English | MEDLINE | ID: mdl-34258597

ABSTRACT

Fluorescence recovery after photobleaching (FRAP) has been widely used to monitor membrane properties by measuring the lateral diffusion of fluorescent particles. This protocol describes how to perform two-photon FRAP on the stereocilia of live cochlear inner hair cells using a lipophilic dye, di-3-ANEPPDHQ, to assess the stereociliary membrane diffusivity. We also detail two-photon FRAP microscope setup and calibration, as well as FRAP parameter setting and data analysis. For complete details on the use and execution of this protocol, please refer to George et al. (2020).


Subject(s)
Fluorescence Recovery After Photobleaching/methods , Hair Cells, Auditory/metabolism , Stereocilia/metabolism , Animals , Coloring Agents/metabolism , Diffusion , Photons , Rats
14.
J Neurophysiol ; 125(6): 2461-2479, 2021 06 01.
Article in English | MEDLINE | ID: mdl-33949873

ABSTRACT

Spiral ganglion neurons (SGNs) form single synapses on inner hair cells (IHCs), transforming sound-induced IHC receptor potentials into trains of action potentials. SGN neurons are classified by spontaneous firing rates as well as their threshold response to sound intensity levels. We investigated the hypothesis that synaptic specializations underlie mouse SGN response properties and vary with pillar versus modiloar synapse location around the hair cell. Depolarizing hair cells with 40 mM K+ increased the rate of postsynaptic responses. Pillar synapses matured later than modiolar synapses. Excitatory postsynaptic current (EPSC) amplitude, area, and number of underlying events per EPSC were similar between synapse locations at steady state. However, modiolar synapses produced larger monophasic EPSCs when EPSC rates were low and EPSCs became more multiphasic and smaller in amplitude when rates were higher, while pillar synapses produced more monophasic and larger EPSCs when the release rates were higher. We propose that pillar and modiolar synapses have different operating points. Our data provide insight into underlying mechanisms regulating EPSC generation.NEW & NOTEWORTHY Data presented here provide the first direct functional evidence of late synaptic maturation of the hair cell- spiral ganglion neuron synapse, where pillar synapses mature after postnatal day 20. Data identify a presynaptic difference in release during stimulation. This difference may in part drive afferent firing properties.


Subject(s)
Cochlea/physiology , Excitatory Postsynaptic Potentials/physiology , Hair Cells, Auditory, Inner/physiology , Neurons/physiology , Spiral Ganglion/physiology , Synapses/physiology , Animals , Female , Male , Mice , Mice, Inbred C57BL , Spiral Ganglion/growth & development
15.
iScience ; 23(12): 101773, 2020 Dec 18.
Article in English | MEDLINE | ID: mdl-33294782

ABSTRACT

The lipid bilayer plays a pivotal role in force transmission to many mechanically-gated channels. We developed the technology to monitor membrane diffusivity in order to test the hypothesis positing that Ca2+ regulates open probability (P o) of cochlear hair cell mechanotransduction (MET) channels via the plasma membrane. The stereociliary membrane was more diffusive (9x) than the basolateral membrane. Elevating intracellular Ca2+ buffering or lowering extracellular Ca2+ reduced stereociliary diffusivity and increased MET P o. In contrast, prolonged depolarization increased stereociliary diffusivity and reduced MET P o. No comparable effects were noted for soma measurements. Although MET channels are located in the shorter stereocilia rows, both rows had similar baseline diffusivity and showed similar responses to Ca2+ manipulations and MET channel blocks, suggesting that diffusivity is independent of MET. Together, these data suggest that the stereociliary membrane is a component of a calcium-modulated viscoelastic-like element regulating hair cell mechanotransduction.

16.
Proc Natl Acad Sci U S A ; 117(51): 32423-32432, 2020 12 22.
Article in English | MEDLINE | ID: mdl-33288712

ABSTRACT

Gentamicin is a potent broad-spectrum aminoglycoside antibiotic whose use is hampered by ototoxic side-effects. Hospital gentamicin is a mixture of five gentamicin C-subtypes and several impurities of various ranges of nonexact concentrations. We developed a purification strategy enabling assaying of individual C-subtypes and impurities for ototoxicity and antimicrobial activity. We found that C-subtypes displayed broad and potent in vitro antimicrobial activities comparable to the hospital gentamicin mixture. In contrast, they showed different degrees of ototoxicity in cochlear explants, with gentamicin C2b being the least and gentamicin C2 the most ototoxic. Structure-activity relationships identified sites in the C4'-C6' region on ring I that reduced ototoxicity while preserving antimicrobial activity, thus identifying targets for future drug design and mechanisms for hair cell toxicity. Structure-activity relationship data suggested and electrophysiological data showed that the C-subtypes both bind and permeate the hair cell mechanotransducer channel, with the stronger the binding the less ototoxic the compound. Finally, both individual and reformulated mixtures of C-subtypes demonstrated decreased ototoxicity while maintaining antimicrobial activity, thereby serving as a proof-of-concept of drug reformulation to minimizing ototoxicity of gentamicin in patients.


Subject(s)
Anti-Bacterial Agents/pharmacology , Cochlea/drug effects , Gentamicins/adverse effects , Gentamicins/chemistry , Gentamicins/pharmacology , Animals , Anti-Bacterial Agents/adverse effects , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/isolation & purification , Cochlea/cytology , Drug Contamination , Gentamicins/isolation & purification , Hair Cells, Auditory/drug effects , Hospitals , Ion Channels/metabolism , Mechanotransduction, Cellular/drug effects , Microbial Sensitivity Tests , Rats, Sprague-Dawley , Sisomicin/pharmacology , Structure-Activity Relationship
17.
Sci Rep ; 10(1): 20687, 2020 11 26.
Article in English | MEDLINE | ID: mdl-33244175

ABSTRACT

Current clinical interest lies in the relationship between hearing loss and cognitive impairment. Previous work demonstrated that noise exposure, a common cause of sensorineural hearing loss (SNHL), leads to cognitive impairments in mice. However, in noise-induced models, it is difficult to distinguish the effects of noise trauma from subsequent SNHL on central processes. Here, we use cochlear hair cell ablation to isolate the effects of SNHL. Cochlear hair cells were conditionally and selectively ablated in mature, transgenic mice where the human diphtheria toxin (DT) receptor was expressed behind the hair-cell specific Pou4f3 promoter. Due to higher Pou4f3 expression in cochlear hair cells than vestibular hair cells, administration of a low dose of DT caused profound SNHL without vestibular dysfunction and had no effect on wild-type (WT) littermates. Spatial learning/memory was assayed using an automated radial 8-arm maze (RAM), where mice were trained to find food rewards over a 14-day period. The number of working memory errors (WME) and reference memory errors (RME) per training day were recorded. All animals were injected with DT during P30-60 and underwent the RAM assay during P90-120. SNHL animals committed more WME and RME than WT animals, demonstrating that isolated SNHL affected cognitive function. Duration of SNHL (60 versus 90 days post DT injection) had no effect on RAM performance. However, younger age of acquired SNHL (DT on P30 versus P60) was associated with fewer WME. This describes the previously undocumented effect of isolated SNHL on cognitive processes that do not directly rely on auditory sensory input.


Subject(s)
Hair Cells, Auditory/physiology , Memory/physiology , Spatial Learning/physiology , Animals , Cognition/physiology , Deafness/metabolism , Deafness/physiopathology , Evoked Potentials, Auditory, Brain Stem/physiology , Hair Cells, Auditory/metabolism , Hair Cells, Vestibular/metabolism , Hair Cells, Vestibular/physiology , Hearing/physiology , Hearing Loss, Sensorineural/metabolism , Hearing Loss, Sensorineural/physiopathology , Heparin-binding EGF-like Growth Factor/metabolism , Mice , Mice, Inbred C57BL , Mice, Transgenic , Noise , Transcription Factor Brn-3C/metabolism
18.
Front Cell Neurosci ; 13: 471, 2019.
Article in English | MEDLINE | ID: mdl-31736710

ABSTRACT

The inner ear houses the sensory epithelium responsible for vestibular and auditory function. The sensory epithelia are driven by pressure and vibration of the fluid filled structures in which they are embedded so that understanding the homeostatic mechanisms regulating fluid dynamics within these structures is critical to understanding function at the systems level. Additionally, there is a growing need for drug delivery to the inner ear for preventive and restorative treatments to the pathologies associated with hearing and balance dysfunction. We compare drug delivery to neonatal and adult inner ear by injection into the posterior semicircular canal (PSCC) or through the round window membrane (RWM). PSCC injections produced higher levels of dye delivery within the cochlea than did RWM injections. Neonatal PSCC injections produced a gradient in dye distribution; however, adult distributions were relatively uniform. RWM injections resulted in an early base to apex gradient that became more uniform over time, post injection. RWM injections lead to higher levels of dye distributions in the brain, likely demonstrating that injections can traverse the cochlea aqueduct. We hypothesize the relative position of the cochlear aqueduct between injection site and cochlea is instrumental in dictating dye distribution within the cochlea. Dye distribution is further compounded by the ability of some chemicals to cross inner ear membranes accessing the blood supply as demonstrated by the rapid distribution of gentamicin-conjugated Texas red (GTTR) throughout the body. These data allow for a direct evaluation of injection mode and age to compare strengths and weaknesses of the two approaches.

19.
J Neurosci ; 39(46): 9098-9106, 2019 11 13.
Article in English | MEDLINE | ID: mdl-31578232

ABSTRACT

Sound detection in auditory sensory hair cells depends on the deflection of the stereocilia hair bundle which opens mechano-electric transduction (MET) channels. Adaptation is hypothesized to be a critical property of MET that contributes to the auditory system's wide dynamic range and sharp frequency selectivity. Our recent work using a stiff probe to displace hair bundles showed that the fastest adaptation mechanism (fast adaptation) does not require calcium entry. Using fluid-jet stimuli, others obtained data showing only a calcium-dependent fast adaptation response. Because cochlear stereocilia do not move coherently and the hair cell response depends critically on the magnitude and time course of the hair bundle deflection, we developed a high-speed imaging technique to quantify this deflection in rat cochlear hair cells. The fluid jet delivers a force stimulus, and force steps lead to a complex time course of hair bundle displacement (mechanical creep), which affects the hair cell's macroscopic MET current response by masking the time course of the fast adaptation response. Modifying the fluid-jet stimulus to generate a hair bundle displacement step produced rapidly adapting currents that did not depend on membrane potential, confirming that fast adaptation does not depend on calcium entry. MET current responses differ with stimulus modality and will shape receptor potentials of different hair cell types based on their in vivo stimulus mode. These transformations will directly affect how stimuli are encoded.SIGNIFICANCE STATEMENT Mechanotransduction by sensory hair cells represents a key first step for the sound sensing ability in vertebrates. The sharp frequency tuning and wide dynamic range of sound sensation are hypothesized to require a mechanotransduction adaptation mechanism. Recent work indicated that the apparent calcium dependence of the fastest adaptation differs with the method of cochlear hair cell stimulation. Here, we reconcile existing data and show that calcium entry does not drive the fastest adaptation process, independent of the stimulation method. With force stimulation of the hair bundle, adaptation manifests differently than with displacement stimulation, indicating that the stimulation mode of the hair bundle will affect the hair cell receptor current and stimulus coding.


Subject(s)
Adaptation, Physiological , Hair Cells, Auditory/physiology , Mechanotransduction, Cellular/physiology , Animals , Calcium Signaling , Female , Hearing/physiology , Male , Membrane Potentials , Physical Stimulation , Rats, Sprague-Dawley , Stereocilia/physiology
20.
PLoS Biol ; 17(7): e3000326, 2019 07.
Article in English | MEDLINE | ID: mdl-31260439

ABSTRACT

Sensory hair cells are mechanoreceptors required for hearing and balance functions. From embryonic development, hair cells acquire apical stereociliary bundles for mechanosensation, basolateral ion channels that shape receptor potential, and synaptic contacts for conveying information centrally. These key maturation steps are sequential and presumed coupled; however, whether hair cells emerging postnatally mature similarly is unknown. Here, we show that in vivo postnatally generated and regenerated hair cells in the utricle, a vestibular organ detecting linear acceleration, acquired some mature somatic features but hair bundles appeared nonfunctional and short. The utricle consists of two hair cell subtypes with distinct morphological, electrophysiological and synaptic features. In both the undamaged and damaged utricle, fate-mapping and electrophysiology experiments showed that Plp1+ supporting cells took on type II hair cell properties based on molecular markers, basolateral conductances and synaptic properties yet stereociliary bundles were absent, or small and nonfunctional. By contrast, Lgr5+ supporting cells regenerated hair cells with type I and II properties, representing a distinct hair cell precursor subtype. Lastly, direct physiological measurements showed that utricular function abolished by damage was partially regained during regeneration. Together, our data reveal a previously unrecognized aberrant maturation program for hair cells generated and regenerated postnatally and may have broad implications for inner ear regenerative therapies.


Subject(s)
Cell Differentiation/physiology , Hair Cells, Auditory/physiology , Hair Cells, Vestibular/physiology , Mechanoreceptors/physiology , Regeneration/physiology , Saccule and Utricle/physiology , Animals , Electrophysiological Phenomena/physiology , Hair Cells, Auditory/cytology , Hair Cells, Vestibular/cytology , Mechanoreceptors/cytology , Mice, Transgenic , Saccule and Utricle/cytology , Synaptic Transmission/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...