Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 99
Filter
1.
Clin Epigenetics ; 16(1): 99, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39090763

ABSTRACT

BACKGROUND: Imprinting disorders are rare diseases resulting from altered expression of imprinted genes, which exhibit parent-of-origin-specific expression patterns regulated through differential DNA methylation. A subgroup of patients with imprinting disorders have DNA methylation changes at multiple imprinted loci, a condition referred to as multi-locus imprinting disturbance (MLID). MLID is recognised in most but not all imprinting disorders and is also found in individuals with atypical clinical features; the presence of MLID often alters the management or prognosis of the affected person. Some cases of MLID are caused by trans-acting genetic variants, frequently not in the patients but their mothers, which have counselling implications. There is currently no consensus on the definition of MLID, clinical indications prompting testing, molecular procedures and methods for epigenetic and genetic diagnosis, recommendations for laboratory reporting, considerations for counselling, and implications for prognosis and management. The purpose of this study is thus to cover this unmet need. METHODS: A comprehensive literature search was conducted resulting in identification of more than 100 articles which formed the basis of discussions by two working groups focusing on clinical diagnosis (n = 12 members) and molecular testing (n = 19 members). Following eight months of preparations and regular online discussions, the experts from 11 countries compiled the preliminary documentation and determined the questions to be addressed during a face-to-face meeting which was held with the attendance of the experts together with four representatives of patient advocacy organisations. RESULTS: In light of available evidence and expert consensus, we formulated 16 propositions and 8 recommendations as interim guidance for the clinical and molecular diagnosis of MLID. CONCLUSIONS: MLID is a molecular designation, and for patients with MLID and atypical phenotypes, we propose the alternative term multi-locus imprinting syndrome. Due to the intrinsic variability of MLID, the guidelines underscore the importance of involving experts from various fields to ensure a confident approach to diagnosis, counselling, and care. The authors advocate for global, collaborative efforts in both basic and translational research to tackle numerous crucial questions that currently lack answers, and suggest reconvening within the next 3-5 years to evaluate the research advancements and update this guidance as needed.


Subject(s)
DNA Methylation , Genomic Imprinting , Humans , Genomic Imprinting/genetics , DNA Methylation/genetics , Genetic Testing/methods
2.
Trends Genet ; 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38955588

ABSTRACT

Oocyte maturation and preimplantation embryo development are critical to successful pregnancy outcomes and the correct establishment and maintenance of genomic imprinting. Thanks to novel technologies and omics studies in human patients and mouse models, the importance of the proteins associated with the cytoplasmic lattices (CPLs), highly abundant structures found in the cytoplasm of mammalian oocytes and preimplantation embryos, in the maternal to zygotic transition is becoming increasingly evident. This review highlights the recent discoveries on the role of these proteins in protein storage and other oocyte cytoplasmic processes, epigenetic reprogramming, and zygotic genome activation (ZGA). A better comprehension of these events may significantly improve clinical diagnosis and pave the way for targeted interventions aiming to correct or mitigate female fertility issues and genomic imprinting disorders.

3.
Front Immunol ; 15: 1419748, 2024.
Article in English | MEDLINE | ID: mdl-39040103

ABSTRACT

Immunodeficiency, Centromeric instability and Facial anomalies (ICF) syndrome is a rare genetic disorder characterized by variable immunodeficiency. More than half of the affected individuals show mild to severe intellectual disability at early onset. This disorder is genetically heterogeneous and ZBTB24 is the causative gene of the subtype 2, accounting for about 30% of the ICF cases. ZBTB24 is a multifaceted transcription factor belonging to the Zinc-finger and BTB domain-containing protein family, which are key regulators of developmental processes. Aberrant DNA methylation is the main molecular hallmark of ICF syndrome. The functional link between ZBTB24 deficiency and DNA methylation errors is still elusive. Here, we generated a novel ICF2 disease model by deriving induced pluripotent stem cells (iPSCs) from peripheral CD34+-blood cells of a patient homozygous for the p.Cys408Gly mutation, the most frequent missense mutation in ICF2 patients and which is associated with a broad clinical spectrum. The mutation affects a conserved cysteine of the ZBTB24 zinc-finger domain, perturbing its function as transcriptional activator. ICF2-iPSCs recapitulate the methylation defects associated with ZBTB24 deficiency, including centromeric hypomethylation. We validated that the mutated ZBTB24 protein loses its ability to directly activate expression of CDCA7 and other target genes in the patient-derived iPSCs. Upon hematopoietic differentiation, ICF2-iPSCs showed decreased vitality and a lower percentage of CD34+/CD43+/CD45+ progenitors. Overall, the ICF2-iPSC model is highly relevant to explore the role of ZBTB24 in DNA methylation homeostasis and provides a tool to investigate the early molecular events linking ZBTB24 deficiency to the ICF2 clinical phenotype.


Subject(s)
Induced Pluripotent Stem Cells , Phenotype , Primary Immunodeficiency Diseases , Repressor Proteins , Humans , Induced Pluripotent Stem Cells/metabolism , Primary Immunodeficiency Diseases/genetics , Repressor Proteins/genetics , Repressor Proteins/deficiency , DNA Methylation , Immunologic Deficiency Syndromes/genetics , Male , Mutation , Female , Face/abnormalities , Nuclear Proteins
4.
Genes Dev ; 38(3-4): 131-150, 2024 03 22.
Article in English | MEDLINE | ID: mdl-38453481

ABSTRACT

Maternal inactivation of genes encoding components of the subcortical maternal complex (SCMC) and its associated member, PADI6, generally results in early embryo lethality. In humans, SCMC gene variants were found in the healthy mothers of children affected by multilocus imprinting disturbances (MLID). However, how the SCMC controls the DNA methylation required to regulate imprinting remains poorly defined. We generated a mouse line carrying a Padi6 missense variant that was identified in a family with Beckwith-Wiedemann syndrome and MLID. If homozygous in female mice, this variant resulted in interruption of embryo development at the two-cell stage. Single-cell multiomic analyses demonstrated defective maturation of Padi6 mutant oocytes and incomplete DNA demethylation, down-regulation of zygotic genome activation (ZGA) genes, up-regulation of maternal decay genes, and developmental delay in two-cell embryos developing from Padi6 mutant oocytes but little effect on genomic imprinting. Western blotting and immunofluorescence analyses showed reduced levels of UHRF1 in oocytes and abnormal localization of DNMT1 and UHRF1 in both oocytes and zygotes. Treatment with 5-azacytidine reverted DNA hypermethylation but did not rescue the developmental arrest of mutant embryos. Taken together, this study demonstrates that PADI6 controls both nuclear and cytoplasmic oocyte processes that are necessary for preimplantation epigenetic reprogramming and ZGA.


Subject(s)
Oocytes , Zygote , Animals , Child , Female , Humans , Mice , CCAAT-Enhancer-Binding Proteins/genetics , Cytoplasm/genetics , Cytoplasm/metabolism , DNA Methylation/genetics , Embryonic Development/genetics , Genomic Imprinting/genetics , Ubiquitin-Protein Ligases/metabolism
5.
Genes (Basel) ; 15(3)2024 02 29.
Article in English | MEDLINE | ID: mdl-38540380

ABSTRACT

Initially described as a triad of immunodeficiency, congenital heart defects and hypoparathyroidism, 22q11.2 deletion syndrome (22q11.2DS) now encompasses a great amount of abnormalities involving different systems. Approximately 85% of patients share a 3 Mb 22q11.2 region of hemizygous deletion in which 46 protein-coding genes are included. However, the hemizygosity of the genes of this region cannot fully explain the clinical phenotype and the phenotypic variability observed among patients. Additional mutations in genes located outside the deleted region, leading to "dual diagnosis", have been described in 1% of patients. In some cases, the hemizygosity of the 22q11.2 region unmasks autosomal recessive conditions due to additional mutations on the non-deleted allele. Some of the deleted genes play a crucial role in gene expression regulation pathways, involving the whole genome. Typical miRNA expression patterns have been identified in 22q11.2DS, due to an alteration in miRNA biogenesis, affecting the expression of several target genes. Also, a methylation epi-signature in CpG islands differentiating patients from controls has been defined. Herein, we summarize the evidence on the genetic and epigenetic mechanisms implicated in the pathogenesis of the clinical manifestations of 22q11.2 DS. The review of the literature confirms the hypothesis that the 22q11.2DS phenotype results from a network of interactions between deleted protein-coding genes and altered epigenetic regulation.


Subject(s)
DiGeorge Syndrome , Heart Defects, Congenital , MicroRNAs , Humans , DiGeorge Syndrome/genetics , Epigenesis, Genetic , Phenotype , Heart Defects, Congenital/genetics
6.
Biomolecules ; 13(12)2023 11 28.
Article in English | MEDLINE | ID: mdl-38136588

ABSTRACT

Parent-of-origin-dependent gene expression of a few hundred human genes is achieved by differential DNA methylation of both parental alleles. This imprinting is required for normal development, and defects in this process lead to human disease. Induced pluripotent stem cells (iPSCs) serve as a valuable tool for in vitro disease modeling. However, a wave of de novo DNA methylation during reprogramming of iPSCs affects DNA methylation, thus limiting their use. The DNA methyltransferase 3B (DNMT3B) gene is highly expressed in human iPSCs; however, whether the hypermethylation of imprinted loci depends on DNMT3B activity has been poorly investigated. To explore the role of DNMT3B in mediating de novo DNA methylation at imprinted DMRs, we utilized iPSCs generated from patients with immunodeficiency, centromeric instability, facial anomalies type I (ICF1) syndrome that harbor biallelic hypomorphic DNMT3B mutations. Using a whole-genome array-based approach, we observed a gain of methylation at several imprinted loci in control iPSCs but not in ICF1 iPSCs compared to their parental fibroblasts. Moreover, in corrected ICF1 iPSCs, which restore DNMT3B enzymatic activity, imprinted DMRs did not acquire control DNA methylation levels, in contrast to the majority of the hypomethylated CpGs in the genome that were rescued in the corrected iPSC clones. Overall, our study indicates that DNMT3B is responsible for de novo methylation of a subset of imprinted DMRs during iPSC reprogramming and suggests that imprinting is unstable during a specific time window of this process, after which the epigenetic state at these regions becomes resistant to perturbation.


Subject(s)
Immunologic Deficiency Syndromes , Induced Pluripotent Stem Cells , Humans , Induced Pluripotent Stem Cells/metabolism , DNA (Cytosine-5-)-Methyltransferases/genetics , DNA (Cytosine-5-)-Methyltransferases/metabolism , DNA Methylation , Mutation , Immunologic Deficiency Syndromes/genetics , Genomic Imprinting
7.
Taiwan J Obstet Gynecol ; 62(6): 830-837, 2023 Nov.
Article in English | MEDLINE | ID: mdl-38008501

ABSTRACT

OBJECTIVE: The most severe type of male infertility is non-obstructive azoospermia (NOA), where there is no sperm in the ejaculate due to failure of spermatogenesis, affecting 10%-20% of infertile men with azoospermia. Genetic studies have identified dozens of NOA genes. The main aim of the present study is to identify a novel monogenic mutation that may cause NOA. MATERIALS AND METHODS: We studied the pedigree of a consanguineous family with three NOA and one fertile brother by a family-based exome-sequencing, segregation analysis, insilico protein modeling and single-cell RNA sequencing data analysis. RESULTS: Bioinformatics analysis followed by sanger sequencing revealed that three NOA brothers were homozygous for a rare missense variant in Cyclin Dependent Kinase Regulatory Subunit Associated Protein 2 (Centrosomin) CDK5RAP2 (NM_018249:exon26:c.A4003T:p.R1335W, rs761196443). Protein modeling demonstrated that CDK5RAP2, Arg1335Trp resided nearby the Microtubule Associated Protein RP/EB Family Member 1 (EB1/MAPRE1) interaction site. As a consequence of the R1335W mutation, the positively charged Arginine was replaced by to the hydrophobic tryptophan residue, possibly leading to local instability in the structure and perturbation in the CDK5RAP2-MAPRE1 interaction. CONCLUSION: Our study reports a novel missense variant of CDK5RAP2 that segregates in homozygosity with male infertility and NOA in a consanguineous family. In silico structural predictions and gene expression data indicate a potential role of the CDK5RAP2 variant in causing defective centrosomic maturation during spermatogenesis.


Subject(s)
Azoospermia , Infertility, Male , Humans , Male , Azoospermia/genetics , Azoospermia/complications , Infertility, Male/genetics , Mutation , Mutation, Missense , Nerve Tissue Proteins/genetics , Cell Cycle Proteins/genetics
8.
Ital J Pediatr ; 49(1): 127, 2023 Sep 25.
Article in English | MEDLINE | ID: mdl-37749604

ABSTRACT

BACKGROUND: Beckwith-Wiedemann syndrome (BWS, OMIM #130,650) is a pediatric overgrowth disorder involving a predisposition to tumor development. Although the clinical management of affected patients is well established, it is less clear how to handle with the cases of siblings of affected patients, since the prevalence of the condition in twins (1:1000) is ten times higher than in singletones (1:10000). CASE PRESENTATION: We report the case of a premature twin patient who during her follow-up develops a clinical phenotype compatible with BWS, genetically confirmed in blood. However, the methylation alteration characteristic of the condition was also found in the almost phenotypically normal sibling, making it challening her management. CONCLUSION: Through our case report we highlight how the diagnosis of BWS can be made without any prenatal suspicion and we propose a review of the literature on how to manage siblings of affected patients in twinning situation.


Subject(s)
Beckwith-Wiedemann Syndrome , Female , Child , Pregnancy , Humans , Beckwith-Wiedemann Syndrome/diagnosis , Beckwith-Wiedemann Syndrome/genetics , Beckwith-Wiedemann Syndrome/therapy , Genotype , Phenotype , Siblings , Twins
9.
Front Cell Dev Biol ; 11: 1237629, 2023.
Article in English | MEDLINE | ID: mdl-37635873

ABSTRACT

Imprinting disorders are congenital diseases caused by dysregulation of genomic imprinting, affecting growth, neurocognitive development, metabolism and cancer predisposition. Overlapping clinical features are often observed among this group of diseases. In rare cases, two fully expressed imprinting disorders may coexist in the same patient. A dozen cases of this type have been reported so far. Most of them are represented by individuals affected by Beckwith-Wiedemann spectrum (BWSp) and Transient Neonatal Diabetes Mellitus (TNDM) or BWSp and Pseudo-hypoparathyroidism type 1B (PHP1B). All these patients displayed Multilocus imprinting disturbances (MLID). Here, we report the first case of co-occurrence of BWS and PHP1B in the same individual in absence of MLID. Genome-wide methylation and SNP-array analyses demonstrated loss of methylation of the KCNQ1OT1:TSS-DMR on chromosome 11p15.5 as molecular cause of BWSp, and upd(20)pat as cause of PHP1B. The absence of MLID and the heterodisomy of chromosome 20 suggests that BWSp and PHP1B arose through distinct and independent mechanism in our patient. However, we cannot exclude that the rare combination of the epigenetic defect on chromosome 11 and the UPD on chromosome 20 may originate from a common so far undetermined predisposing molecular lesion. A better comprehension of the molecular mechanisms underlying the co-occurrence of two imprinting disorders will improve genetic counselling and estimate of familial recurrence risk of these rare cases. Furthermore, our study also supports the importance of multilocus molecular testing for revealing MLID as well as complex cases of imprinting disorders.

10.
Nat Rev Dis Primers ; 9(1): 33, 2023 Jun 29.
Article in English | MEDLINE | ID: mdl-37386011

ABSTRACT

Imprinting disorders (ImpDis) are congenital conditions that are characterized by disturbances of genomic imprinting. The most common individual ImpDis are Prader-Willi syndrome, Angelman syndrome and Beckwith-Wiedemann syndrome. Individual ImpDis have similar clinical features, such as growth disturbances and developmental delay, but the disorders are heterogeneous and the key clinical manifestations are often non-specific, rendering diagnosis difficult. Four types of genomic and imprinting defect (ImpDef) affecting differentially methylated regions (DMRs) can cause ImpDis. These defects affect the monoallelic and parent-of-origin-specific expression of imprinted genes. The regulation within DMRs as well as their functional consequences are mainly unknown, but functional cross-talk between imprinted genes and functional pathways has been identified, giving insight into the pathophysiology of ImpDefs. Treatment of ImpDis is symptomatic. Targeted therapies are lacking owing to the rarity of these disorders; however, personalized treatments are in development. Understanding the underlying mechanisms of ImpDis, and improving diagnosis and treatment of these disorders, requires a multidisciplinary approach with input from patient representatives.

11.
Cancers (Basel) ; 15(7)2023 Mar 23.
Article in English | MEDLINE | ID: mdl-37046605

ABSTRACT

CRC is an adult-onset carcinoma representing the third most common cancer and the second leading cause of cancer-related deaths in the world. EO-CRC (<45 years of age) accounts for 5% of the CRC cases and is associated with cancer-predisposing genetic factors in half of them. Here, we describe the case of a woman affected by BWSp who developed EO-CRC at age 27. To look for a possible molecular link between BWSp and EO-CRC, we analysed her whole-genome genetic and epigenetic profiles in blood, and peri-neoplastic and neoplastic colon tissues. The results revealed a general instability of the tumor genome, including copy number and methylation changes affecting genes of the WNT signaling pathway, CRC biomarkers and imprinted loci. At the germline level, two missense mutations predicted to be likely pathogenic were found in compound heterozygosity affecting the Cystic Fibrosis (CF) gene CFTR that has been recently classified as a tumor suppressor gene, whose dysregulation represents a severe risk factor for developing CRC. We also detected constitutional loss of methylation of the KCNQ1OT1:TSS-DMR that leads to bi-allelic expression of the lncRNA KCNQ1OT1 and BWSp. Our results support the hypothesis that the inherited CFTR mutations, together with constitutional loss of methylation of the KCNQ1OT1:TSS-DMR, initiate the tumorigenesis process. Further somatic genetic and epigenetic changes enhancing the activation of the WNT/beta-catenin pathway likely contributed to increase the growth advantage of cancer cells. Although this study does not provide any conclusive cause-effect relationship between BWSp and CRC, it is tempting to speculate that the imprinting defect of BWSp might accelerate tumorigenesis in adult cancer in the presence of predisposing genetic variants.

12.
Cancers (Basel) ; 15(3)2023 Jan 26.
Article in English | MEDLINE | ID: mdl-36765732

ABSTRACT

Different scoring systems for the clinical diagnosis of the Beckwith-Wiedemann spectrum (BWSp) have been developed over time, the most recent being the international consensus score. Here we try to validate and provide data on the performance metrics of these scoring systems of the 2018 international consensus and the previous ones, relating them to BWSp features, molecular tests, and the probability of cancer development in a cohort of 831 patients. The consensus scoring system had the best performance (sensitivity 0.85 and specificity 0.43). In our cohort, the diagnostic yield of tests on blood-extracted DNA was low in patients with a low consensus score (~20% with a score = 2), and the score did not correlate with cancer development. We observed hepatoblastoma (HB) in 4.3% of patients with UPD(11)pat and Wilms tumor in 1.9% of patients with isolated lateralized overgrowth (ILO). We validated the efficacy of the currently used consensus score for BWSp clinical diagnosis. Based on our observation, a first-tier analysis of tissue-extracted DNA in patients with <4 points may be considered. We discourage the use of the consensus score value as an indicator of the probability of cancer development. Moreover, we suggest considering cancer screening for negative patients with ILO (risk ~2%) and HB screening for patients with UPD(11)pat (risk ~4%).

13.
Front Pharmacol ; 14: 1329244, 2023.
Article in English | MEDLINE | ID: mdl-38239190

ABSTRACT

Gastrointestinal (GI) cancers comprise a significant number of cancer cases worldwide and contribute to a high percentage of cancer-related deaths. To improve survival rates of GI cancer patients, it is important to find and implement more effective therapeutic strategies with better prognoses and fewer side effects. The development of new drugs can be a lengthy and expensive process, often involving clinical trials that may fail in the early stages. One strategy to address these challenges is drug repurposing (DR). Drug repurposing is a developmental strategy that involves using existing drugs approved for other diseases and leveraging their safety and pharmacological data to explore their potential use in treating different diseases. In this paper, we outline the existing therapeutic strategies and challenges associated with GI cancers and explore DR as a promising alternative approach. We have presented an extensive review of different DR methodologies, research efforts and examples of repurposed drugs within various GI cancer types, such as colorectal, pancreatic and liver cancers. Our aim is to provide a comprehensive overview of employing the DR approach in GI cancers to inform future research endeavors and clinical trials in this field.

14.
Clin Epigenetics ; 14(1): 143, 2022 11 07.
Article in English | MEDLINE | ID: mdl-36345041

ABSTRACT

BACKGROUND: Imprinting disorders, which affect growth, development, metabolism and neoplasia risk, are caused by genetic or epigenetic changes to genes that are expressed from only one parental allele. Disease may result from changes in coding sequences, copy number changes, uniparental disomy or imprinting defects. Some imprinting disorders are clinically heterogeneous, some are associated with more than one imprinted locus, and some patients have alterations affecting multiple loci. Most imprinting disorders are diagnosed by stepwise analysis of gene dosage and methylation of single loci, but some laboratories assay a panel of loci associated with different imprinting disorders. We looked into the experience of several laboratories using single-locus and/or multi-locus diagnostic testing to explore how different testing strategies affect diagnostic outcomes and whether multi-locus testing has the potential to increase the diagnostic efficiency or reveal unforeseen diagnoses. RESULTS: We collected data from 11 laboratories in seven countries, involving 16,364 individuals and eight imprinting disorders. Among the 4721 individuals tested for the growth restriction disorder Silver-Russell syndrome, 731 had changes on chromosomes 7 and 11 classically associated with the disorder, but 115 had unexpected diagnoses that involved atypical molecular changes, imprinted loci on chromosomes other than 7 or 11 or multi-locus imprinting disorder. In a similar way, the molecular changes detected in Beckwith-Wiedemann syndrome and other imprinting disorders depended on the testing strategies employed by the different laboratories. CONCLUSIONS: Based on our findings, we discuss how multi-locus testing might optimise diagnosis for patients with classical and less familiar clinical imprinting disorders. Additionally, our compiled data reflect the daily life experiences of diagnostic laboratories, with a lower diagnostic yield than in clinically well-characterised cohorts, and illustrate the need for systematising clinical and molecular data.


Subject(s)
Beckwith-Wiedemann Syndrome , Silver-Russell Syndrome , Humans , Genomic Imprinting , DNA Methylation , Silver-Russell Syndrome/diagnosis , Silver-Russell Syndrome/genetics , Beckwith-Wiedemann Syndrome/diagnosis , Beckwith-Wiedemann Syndrome/genetics , Growth Disorders/genetics , Diagnostic Techniques and Procedures
15.
Genes (Basel) ; 13(10)2022 10 16.
Article in English | MEDLINE | ID: mdl-36292759

ABSTRACT

Silver-Russell syndrome is an imprinting disorder characterised by pre- and post-natal growth retardation and several heterogeneous molecular defects affecting different human genomic loci. In the majority of cases, the molecular defect is the loss of methylation (LOM) of the H19/IGF2 differentially methylated region (DMR, also known as IC1) at the telomeric domain of the 11p15.5 imprinted genes cluster, which causes the altered expression of the growth controlling genes, IGF2 and H19. Very rarely, the LOM also affects the KCNQ1OT1 DMR (also known as IC2) at the centromeric domain, resulting in an SRS phenotype by an unknown mechanism. In this study, we report on two cases with SRS features and a LOM of either IC1 and IC2. In one case, this rare and complex epimutation was secondary to a de novo mosaic in cis maternal duplication, involving the entire telomeric 11p15.5 domain and part of the centromeric domain but lacking CDKN1C. In the second case, neither the no 11p15.5 copy number variant nor the maternal-effect subcortical maternal complex (SCMC) variant were found to be associated with the epimutation, suggesting that it arose as a primary event. Our findings further add to the complexity of the molecular genetics of SRS and indicate how the LOM in both 11p15.5 DMRs may result from different molecular mechanisms.


Subject(s)
Silver-Russell Syndrome , Humans , Silver-Russell Syndrome/genetics , Genomic Imprinting , DNA Methylation/genetics , Phenotype , DNA Copy Number Variations
16.
Epigenetics Chromatin ; 15(1): 27, 2022 08 02.
Article in English | MEDLINE | ID: mdl-35918739

ABSTRACT

BACKGROUND: Imprinting Control Regions (ICRs) are CpG-rich sequences acquiring differential methylation in the female and male germline and maintaining it in a parental origin-specific manner in somatic cells. Despite their expected high mutation rate due to spontaneous deamination of methylated cytosines, ICRs show conservation of CpG-richness and CpG-containing transcription factor binding sites in mammalian species. However, little is known about the mechanisms contributing to the maintenance of a high density of methyl CpGs at these loci. RESULTS: To gain functional insights into the mechanisms for maintaining CpG methylation, we sought to identify the proteins binding the methylated allele of the ICRs by determining the interactors of ZFP57 that recognizes a methylated hexanucleotide motif of these DNA regions in mouse ESCs. By using a tagged approach coupled to LC-MS/MS analysis, we identified several proteins, including factors involved in mRNA processing/splicing, chromosome organization, transcription and DNA repair processes. The presence of the post-replicative mismatch-repair (MMR) complex components MSH2 and MSH6 among the identified ZFP57 interactors prompted us to investigate their DNA binding profile by chromatin immunoprecipitation and sequencing. We demonstrated that MSH2 was enriched at gene promoters overlapping unmethylated CpG islands and at repeats. We also found that both MSH2 and MSH6 interacted with the methylated allele of the ICRs, where their binding to DNA was mediated by the ZFP57/KAP1 complex. CONCLUSIONS: Our findings show that the MMR complex is concentrated on gene promoters and repeats in mouse ESCs, suggesting that maintaining the integrity of these regions is a primary function of highly proliferating cells. Furthermore, the demonstration that MSH2/MSH6 are recruited to the methylated allele of the ICRs through interaction with ZFP57/KAP1 suggests a role of the MMR complex in the maintenance of the integrity of these regulatory regions and evolution of genomic imprinting in mammalian species.


Subject(s)
DNA Methylation , Repressor Proteins , Animals , Chromatography, Liquid , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Female , Genomic Imprinting , Mammals/metabolism , Mice , MutS Homolog 2 Protein/genetics , MutS Homolog 2 Protein/metabolism , Repressor Proteins/metabolism , Tandem Mass Spectrometry
17.
Clin Genet ; 102(4): 314-323, 2022 10.
Article in English | MEDLINE | ID: mdl-35842840

ABSTRACT

The prevalence of Beckwith-Wiedemann spectrum (BWSp) is tenfold increased in children conceived through assisted reproductive techniques (ART). More than 90% of ART-BWSp patients reported so far display imprinting center 2 loss-of-methylations (IC2-LoM), versus 50% of naturally conceived BWSp patients. We describe a cohort of 74 ART-BWSp patients comparing their features with a cohort of naturally conceived BWSp patients, with the ART-BWSp patients previously described in literature, and with the general population of children born from ART. We found that the distribution of UPD(11)pat was not significantly different in ART and naturally conceived patients. We observed 68.9% of IC2-LoM and 16.2% of mosaic UPD(11)pat in our ART cohort, that strongly differ from the figure reported in other cohorts so far. Since UPD(11)pat likely results from post-fertilization recombination events, our findings allows to hypothesize that more complex molecular mechanisms, besides methylation disturbances, may underlie BWSp increased risk in ART pregnancies. Moreover, comparing the clinical features of ART and non-ART BWSp patients, we found that ART-BWSp patients might have a milder phenotype. Finally, our data show a progressive increase in the prevalence of BWSp over time, paralleling that of ART usage in the last decades.


Subject(s)
Beckwith-Wiedemann Syndrome , Genomic Imprinting , Beckwith-Wiedemann Syndrome/epidemiology , Beckwith-Wiedemann Syndrome/genetics , DNA Methylation/genetics , Female , Fertilization , Genomic Imprinting/genetics , Humans , Pregnancy , Reproductive Techniques, Assisted/adverse effects
18.
Clin Epigenetics ; 14(1): 71, 2022 05 28.
Article in English | MEDLINE | ID: mdl-35643636

ABSTRACT

BACKGROUND: Beckwith-Wiedemann syndrome (BWS) and Pseudohypoparathyroidism type 1B (PHP1B) are imprinting disorders (ID) caused by deregulation of the imprinted gene clusters located at 11p15.5 and 20q13.32, respectively. In both of these diseases a subset of the patients is affected by multi-locus imprinting disturbances (MLID). In several families, MLID is associated with damaging variants of maternal-effect genes encoding protein components of the subcortical maternal complex (SCMC). However, frequency, penetrance and recurrence risks of these variants are still undefined. In this study, we screened two cohorts of BWS patients and one cohort of PHP1B patients for the presence of MLID, and analysed the positive cases for the presence of maternal variants in the SCMC genes by whole exome-sequencing and in silico functional studies. RESULTS: We identified 10 new cases of MLID associated with the clinical features of either BWS or PHP1B, in which segregate 13 maternal putatively damaging missense variants of the SCMC genes. The affected genes also included KHDC3L that has not been associated with MLID to date. Moreover, we highlight the possible relevance of relatively common variants in the aetiology of MLID. CONCLUSION: Our data further add to the list of the SCMC components and maternal variants that are involved in MLID, as well as of the associated clinical phenotypes. Also, we propose that in addition to rare variants, common variants may play a role in the aetiology of MLID and imprinting disorders by exerting an additive effect in combination with rarer putatively damaging variants. These findings provide useful information for the molecular diagnosis and recurrence risk evaluation of MLID-associated IDs in genetic counselling.


Subject(s)
Beckwith-Wiedemann Syndrome , Pseudohypoparathyroidism , Beckwith-Wiedemann Syndrome/diagnosis , Beckwith-Wiedemann Syndrome/genetics , DNA Methylation , Genomic Imprinting , Humans , Proteins/genetics , Pseudohypoparathyroidism/genetics , Pseudohypoparathyroidism
19.
Clin Epigenetics ; 14(1): 41, 2022 03 16.
Article in English | MEDLINE | ID: mdl-35296332

ABSTRACT

BACKGROUND: Imprinting disorders are a group of congenital diseases which are characterized by molecular alterations affecting differentially methylated regions (DMRs). To date, at least twelve imprinting disorders have been defined with overlapping but variable clinical features including growth and metabolic disturbances, cognitive dysfunction, abdominal wall defects and asymmetry. In general, a single specific DMR is affected in an individual with a given imprinting disorder, but there are a growing number of reports on individuals with so-called multilocus imprinting disturbances (MLID), where aberrant imprinting marks (most commonly loss of methylation) occur at multiple DMRs. However, as the literature is fragmented, we reviewed the molecular and clinical data of 55 previously reported or newly identified MLID families with putative pathogenic variants in maternal effect genes (NLRP2, NLRP5, NLRP7, KHDC3L, OOEP, PADI6) and in other candidate genes (ZFP57, ARID4A, ZAR1, UHRF1, ZNF445). RESULTS: In 55 families, a total of 68 different candidate pathogenic variants were identified (7 in NLRP2, 16 in NLRP5, 7 in NLRP7, 17 in PADI6, 15 in ZFP57, and a single variant in each of the genes ARID4A, ZAR1, OOEP, UHRF1, KHDC3L and ZNF445). Clinical diagnoses of affected offspring included Beckwith-Wiedemann syndrome spectrum, Silver-Russell syndrome spectrum, transient neonatal diabetes mellitus, or they were suspected for an imprinting disorder (undiagnosed). Some families had recurrent pregnancy loss. CONCLUSIONS: Genomic maternal effect and foetal variants causing MLID allow insights into the mechanisms behind the imprinting cycle of life, and the spatial and temporal function of the different factors involved in oocyte maturation and early development. Further basic research together with identification of new MLID families will enable a better understanding of the link between the different reproductive issues such as recurrent miscarriages and preeclampsia in maternal effect variant carriers/families and aneuploidy and the MLID observed in the offsprings. The current knowledge can already be employed in reproductive and genetic counselling in specific situations.


Subject(s)
Beckwith-Wiedemann Syndrome , Silver-Russell Syndrome , Adaptor Proteins, Signal Transducing/genetics , Beckwith-Wiedemann Syndrome/genetics , CCAAT-Enhancer-Binding Proteins/genetics , DNA Methylation , Female , Genomic Imprinting , Humans , Maternal Inheritance , Pregnancy , Silver-Russell Syndrome/diagnosis , Silver-Russell Syndrome/genetics , Ubiquitin-Protein Ligases/genetics
20.
J Clin Med ; 11(5)2022 Feb 25.
Article in English | MEDLINE | ID: mdl-35268351

ABSTRACT

The epigenome bridges environmental factors and the genome, fine-tuning the process of gene transcription. Physiological programs, including the development, maturation and maintenance of cellular identity and function, are modulated by intricate epigenetic changes that encompass DNA methylation, chromatin remodeling, histone modifications and RNA processing. The collection of genome-wide DNA methylation data has recently shed new light into the potential contribution of epigenetics in pathophysiology, particularly in the field of immune system and host defense. The study of patients carrying mutations in genes encoding for molecules involved in the epigenetic machinery has allowed the identification and better characterization of environment-genome interactions via epigenetics as well as paving the way for the development of new potential therapeutic options. In this review, we summarize current knowledge of the role of epigenetic modifications in the immune system and outline their potential involvement in the pathogenesis of inborn errors of immunity.

SELECTION OF CITATIONS
SEARCH DETAIL