Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Sci Rep ; 11(1): 7211, 2021 Mar 30.
Article in English | MEDLINE | ID: mdl-33785810

ABSTRACT

The knowledge of the dynamic of the Campi Flegrei calderic system is a primary goal to mitigate the volcanic risk in one of the most densely populated volcanic areas in the world. From 1950 to 1990 Campi Flegrei suffered three bradyseismic crises with a total uplift of 4.3 m. After 20 years of subsidence, the uplift started again in 2005 accompained by a low increment of the seismicity rate. In 2012 an increment in the seismic energy release and a variation in the gas composition of the fumaroles of Solfatara (in the central area of the caldera) were recorded. Since then, a slow and progressive increase in phenomena continued until today. We analyze the INGV - Osservatorio Vesuviano seismic catalogue of Campi Flegrei from 2000 to 2020 in order to look for any variation in the seismic parameters and compare them with geochemical monitored ones. A remarkable correlation between independent variables of earthquake cumulative number, CO/CO2 values and vertical ground deformation reveals a likely common origin. Moreover the correlation between all the variables here analysed enlightens that the same origin can cause the temporal behavior of all these variables. We interpret the seismological, geochemical and geodetic observable in terms of the injection of magmatic fluids into the hydrothermal system or its pressurization.

2.
Sci Rep ; 7(1): 4472, 2017 06 30.
Article in English | MEDLINE | ID: mdl-28667256

ABSTRACT

The inter-arrival times of the post 2000 seismicity at Campi Flegrei caldera are statistically distributed into different populations. The low inter-arrival times population represents swarm events, while the high inter-arrival times population marks background seismicity. Here, we show that the background seismicity is increasing at the same rate of (1) the ground uplift and (2) the concentration of the fumarolic gas specie more sensitive to temperature. The seismic temporal increase is strongly correlated with the results of recent simulations, modelling injection of magmatic fluids in the Campi Flegrei hydrothermal system. These concurrent variations point to a unique process of temperature-pressure increase of the hydrothermal system controlling geophysical and geochemical signals at the caldera. Our results thus show that the occurrence of background seismicity is an excellent parameter to monitor the current unrest of the caldera.

SELECTION OF CITATIONS
SEARCH DETAIL