Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
Add more filters










Publication year range
1.
Immunity ; 2024 May 06.
Article in English | MEDLINE | ID: mdl-38744291

ABSTRACT

Epithelial cells secrete chloride to regulate water release at mucosal barriers, supporting both homeostatic hydration and the "weep" response that is critical for type 2 immune defense against parasitic worms (helminths). Epithelial tuft cells in the small intestine sense helminths and release cytokines and lipids to activate type 2 immune cells, but whether they regulate epithelial secretion is unknown. Here, we found that tuft cell activation rapidly induced epithelial chloride secretion in the small intestine. This response required tuft cell sensory functions and tuft cell-derived acetylcholine (ACh), which acted directly on neighboring epithelial cells to stimulate chloride secretion, independent of neurons. Maximal tuft cell-induced chloride secretion coincided with immune restriction of helminths, and clearance was delayed in mice lacking tuft cell-derived ACh, despite normal type 2 inflammation. Thus, we have uncovered an epithelium-intrinsic response unit that uses ACh to couple tuft cell sensing to the secretory defenses of neighboring epithelial cells.

2.
bioRxiv ; 2023 Mar 22.
Article in English | MEDLINE | ID: mdl-36993541

ABSTRACT

Tuft cells are solitary chemosensory epithelial cells that can sense lumenal stimuli at mucosal barriers and secrete effector molecules to regulate the physiology and immune state of their surrounding tissue. In the small intestine, tuft cells detect parasitic worms (helminths) and microbe-derived succinate, and signal to immune cells to trigger a Type 2 immune response that leads to extensive epithelial remodeling spanning several days. Acetylcholine (ACh) from airway tuft cells has been shown to stimulate acute changes in breathing and mucocilliary clearance, but its function in the intestine is unknown. Here we show that tuft cell chemosensing in the intestine leads to release of ACh, but that this does not contribute to immune cell activation or associated tissue remodeling. Instead, tuft cell-derived ACh triggers immediate fluid secretion from neighboring epithelial cells into the intestinal lumen. This tuft cell-regulated fluid secretion is amplified during Type 2 inflammation, and helminth clearance is delayed in mice lacking tuft cell ACh. The coupling of the chemosensory function of tuft cells with fluid secretion creates an epithelium-intrinsic response unit that effects a physiological change within seconds of activation. This response mechanism is shared by tuft cells across tissues, and serves to regulate the epithelial secretion that is both a hallmark of Type 2 immunity and an essential component of homeostatic maintenance at mucosal barriers.

3.
J Allergy Clin Immunol ; 152(1): 56-67, 2023 07.
Article in English | MEDLINE | ID: mdl-37001649

ABSTRACT

BACKGROUND: Despite well-known susceptibilities to other respiratory viral infections, individuals with allergic asthma have shown reduced susceptibility to severe coronavirus disease 2019 (COVID-19). OBJECTIVE: We sought to identify mechanisms whereby type 2 inflammation in the airway protects against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) by using bronchial airway epithelial cells (AECs) from aeroallergen-sensitized children with asthma and healthy nonsensitized children. METHODS: We measured SARS-CoV-2 replication and ACE2 protein and performed bulk and single-cell RNA sequencing of ex vivo infected AEC samples with SARS-CoV-2 infection and with or without IL-13 treatment. RESULTS: We observed that viral replication was lower in AECs from children with allergic asthma than those from in healthy nonsensitized children and that IL-13 treatment reduced viral replication only in children with allergic asthma and not in healthy children. Lower viral transcript levels were associated with a downregulation of functional pathways of the ciliated epithelium related to differentiation as well as cilia and axoneme production and function, rather than lower ACE2 expression or increases in goblet cells or mucus secretion pathways. Moreover, single-cell RNA sequencing identified specific subsets of relatively undifferentiated ciliated epithelium (which are common in allergic asthma and highly responsive to IL-13) that directly accounted for impaired viral replication. CONCLUSION: Our results identify a novel mechanism of innate protection against SARS-CoV-2 in allergic asthma that provides important molecular and clinical insights during the ongoing COVID-19 pandemic.


Subject(s)
Asthma , COVID-19 , Child , Humans , SARS-CoV-2 , Interleukin-13 , Pandemics , Asthma/epidemiology , Inflammation , Epithelial Cells/metabolism , Epithelium/metabolism
4.
BMJ Open Respir Res ; 9(1)2022 10.
Article in English | MEDLINE | ID: mdl-36198442

ABSTRACT

INTRODUCTION: Cellular circadian rhythms regulate immune pathways and inflammatory responses that mediate human disease such as asthma. Circadian rhythms in the lung may also contribute to exacerbations of chronic diseases such as asthma by regulating observed rhythms in mucus production, bronchial reactivity, airway inflammation and airway resistance. Primary human airway epithelial cells (AECs) are commonly used to model human lung diseases, such as asthma, with circadian symptoms, but a method for synchronising circadian rhythms in AECs has not been developed, and the presence of circadian rhythms in human AECs remains uninvestigated. METHODS: We used temperature cycling to synchronise circadian rhythms in undifferentiated and differentiated primary human AECs. Reverse transcriptase-quantitative PCR was used to measure expression of the core circadian clock genes ARNTL, CLOCK, CRY1, CRY2, NR1D1, NR1D2, PER1 and PER2. RESULTS: Following temperature synchronisation, the core circadian genes ARNTL, CRY1, CRY2, NR1D1, NR1D2, PER1 and PER2 maintained endogenous 24-hour rhythms under constant conditions. Following serum shock, the core circadian genes ARNTL, NR1D1 and NR1D2 demonstrated rhythmic expression. Following temperature synchronisation, CXCL8 demonstrated rhythmic circadian expression. CONCLUSIONS: Temperature synchronised circadian rhythms in AECs differentiated at an air-liquid interface can serve as a model to investigate circadian rhythms in pulmonary diseases.


Subject(s)
Asthma , Circadian Rhythm , ARNTL Transcription Factors/genetics , Child , Circadian Rhythm/genetics , Epithelial Cells , Humans , RNA-Directed DNA Polymerase , Temperature
6.
J Exp Med ; 219(9)2022 09 05.
Article in English | MEDLINE | ID: mdl-35938988

ABSTRACT

Humoral immunity to SARS-CoV-2 can be supplemented with polyclonal sera from convalescent donors or an engineered monoclonal antibody (mAb) product. While pentameric IgM antibodies are responsible for much of convalescent sera's neutralizing capacity, all available mAbs are based on the monomeric IgG antibody subtype. We now show that IgM mAbs derived from immune memory B cell receptors are potent neutralizers of SARS-CoV-2. IgM mAbs outperformed clonally identical IgG antibodies across a range of affinities and SARS-CoV-2 receptor-binding domain epitopes. Strikingly, efficacy against SARS-CoV-2 viral variants was retained for IgM but not for clonally identical IgG. To investigate the biological role for IgM memory in SARS-CoV-2, we also generated IgM mAbs from antigen-experienced IgM+ memory B cells in convalescent donors, identifying a potent neutralizing antibody. Our results highlight the therapeutic potential of IgM mAbs and inform our understanding of the role for IgM memory against a rapidly mutating pathogen.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Monoclonal , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/therapy , Humans , Immunization, Passive , Immunoglobulin G , Immunoglobulin M , Memory B Cells , Spike Glycoprotein, Coronavirus , COVID-19 Serotherapy
7.
Sci Rep ; 12(1): 6972, 2022 04 28.
Article in English | MEDLINE | ID: mdl-35484173

ABSTRACT

Common alphacoronaviruses and human rhinoviruses (HRV) induce type I and III interferon (IFN) responses important to limiting viral replication in the airway epithelium. In contrast, highly pathogenic betacoronaviruses including SARS-CoV-2 may evade or antagonize RNA-induced IFN I/III responses. In airway epithelial cells (AECs) from children and older adults we compared IFN I/III responses to SARS-CoV-2 and HRV-16, and assessed whether pre-infection with HRV-16, or pretreatment with recombinant IFN-ß or IFN-λ, modified SARS-CoV-2 replication. Bronchial AECs from children (ages 6-18 years) and older adults (ages 60-75 years) were differentiated ex vivo to generate organotypic cultures. In a biosafety level 3 (BSL-3) facility, cultures were infected with SARS-CoV-2 or HRV-16, and RNA and protein was harvested from cell lysates 96 h. following infection and supernatant was collected 48 and 96 h. following infection. In additional experiments cultures were pre-infected with HRV-16, or pre-treated with recombinant IFN-ß1 or IFN-λ2 before SARS-CoV-2 infection. In a subset of experiments a range of infectious concentrations of HRV-16, SARS-CoV-2 WA-01, SARS-CoV-2 Delta variant, and SARS-CoV-2 Omicron variant were studied. Despite significant between-donor heterogeneity SARS-CoV-2 replicated 100 times more efficiently than HRV-16. IFNB1, INFL2, and CXCL10 gene expression and protein production following HRV-16 infection was significantly greater than following SARS-CoV-2. IFN gene expression and protein production were inversely correlated with SARS-CoV-2 replication. Treatment of cultures with recombinant IFNß1 or IFNλ2, or pre-infection of cultures with HRV-16, markedly reduced SARS-CoV-2 replication. In addition to marked between-donor heterogeneity in IFN responses and viral replication, SARS-CoV-2 (WA-01, Delta, and Omicron variants) elicits a less robust IFN response in primary AEC cultures than does rhinovirus, and heterologous rhinovirus infection, or treatment with recombinant IFN-ß1 or IFN-λ2, reduces SARS-CoV-2 replication, although to a lesser degree for the Delta and Omicron variants.


Subject(s)
COVID-19 Drug Treatment , Interferons , Adolescent , Aged , Antiviral Agents , Child , Humans , Interferons/pharmacology , Middle Aged , RNA , Rhinovirus , SARS-CoV-2
8.
Front Pharmacol ; 12: 765951, 2021.
Article in English | MEDLINE | ID: mdl-34867390

ABSTRACT

Rationale: SARS-CoV-2 gains entrance to airway epithelial cells (AECs) through binding of the viral spike protein to the angiotensin-converting enzyme 2 (ACE2) on the cell surface. However, ACE2 also converts angiotensin II into angiotensin-(1-7) and counterbalances the renin-angiotensin-aldosterone system, with resultant protective effects in the cardiovascular system. Some data suggest that two common antihypertension medications (angiotensin II receptor antagonists, ARBs; and angiotensin-converting-enzyme inhibitors, ACEIs) may increase ACE2 expression in heart and kidney cells, fueling debate about how these widely used medications may modulate SARS-CoV-2 infectivity and risk of COVID-19. Aim: Determine whether exposure of bronchial AECs to the ARB losartan or the ACEI captopril modulate expression of ACE2 by AECs, SARS CoV2 replication, or expression of proinflammatory cytokines and type I and III interferon (IFN) responses. Methods: Primary bronchial AECs from children and adults (n = 19; Ages 8-75 yrs) were differentiated ex vivo at an air-liquid interface to generate organotypic cultures. Cultures were treated with captopril (1 µM) or losartan (2 µM) with culture media changes starting 72 h before infection with SARS-CoV-2. In a biosafety level 3 (BSL-3) facility, cultures were infected with SARS-CoV-2 isolate USA-WA1/2020 at a multiplicity of infection (MOI) of 0.5. At 96 h following infection, RNA and protein were isolated. SARS-CoV-2 replication in cultures was assessed with quantitative PCR (qPCR). ACE2, IL-6, IL-1B, IFNB1, and IFNL2 expression were assessed by qPCR. Results: Neither captopril nor losartan treatment significantly changed ACE2, IL-6, IL-1B, IFNB1, or IFNL2 expression by AECs as compared to SARS-CoV-2 infected AEC cultures without captopril or losartan treatment. At 96 h following infection, SARS-CoV-2 copy number/ng RNA was not significantly different between untreated AEC cultures, cultures treated with captopril, or cultures treated with losartan. Conclusion: These findings suggest that at the level of the airway epithelium neither the ACEI captopril or ARB losartan significantly modify expression of the SARS-CoV-2 entry factor ACE2, nor does either medication increase replication SARS-CoV-2 replication. This ex vivo data is reassuring and is consistent with evolving clinical data suggesting ACEIs and ARBs do not increase the risk for poor prognosis with COVID-19 and may actually reduce the risk of COVID-19 disease.

9.
Elife ; 102021 12 07.
Article in English | MEDLINE | ID: mdl-34874007

ABSTRACT

The emergence of SARS-CoV-2 variants threatens current vaccines and therapeutic antibodies and urgently demands powerful new therapeutics that can resist viral escape. We therefore generated a large nanobody repertoire to saturate the distinct and highly conserved available epitope space of SARS-CoV-2 spike, including the S1 receptor binding domain, N-terminal domain, and the S2 subunit, to identify new nanobody binding sites that may reflect novel mechanisms of viral neutralization. Structural mapping and functional assays show that indeed these highly stable monovalent nanobodies potently inhibit SARS-CoV-2 infection, display numerous neutralization mechanisms, are effective against emerging variants of concern, and are resistant to mutational escape. Rational combinations of these nanobodies that bind to distinct sites within and between spike subunits exhibit extraordinary synergy and suggest multiple tailored therapeutic and prophylactic strategies.


Subject(s)
COVID-19/immunology , SARS-CoV-2/immunology , Single-Domain Antibodies/immunology , Spike Glycoprotein, Coronavirus/immunology , Animals , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Binding Sites , Camelids, New World/immunology , Epitopes/genetics , Epitopes/immunology , HEK293 Cells , Humans , Male , Neutralization Tests , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics
10.
bioRxiv ; 2021 Nov 23.
Article in English | MEDLINE | ID: mdl-34845445

ABSTRACT

INTRODUCTION: Common alphacoronaviruses and human rhinoviruses (HRV) induce type I and III interferon (IFN) responses important to limiting viral replication in the airway epithelium. In contrast, highly pathogenic betacoronaviruses including SARS-CoV-2 may evade or antagonize RNA-induced IFN I/III responses. METHODS: In airway epithelial cells (AECs) from children and older adults we compared IFN I/III responses to SARS-CoV-2 and HRV-16, and assessed whether pre-infection with HRV-16, or pretreatment with recombinant IFN-ß or IFN-λ, modified SARS-CoV-2 replication. Bronchial AECs from children (ages 6-18 yrs.) and older adults (ages 60-75 yrs.) were differentiated ex vivo to generate organotypic cultures. In a biosafety level 3 (BSL-3) facility, cultures were infected with SARS-CoV-2 or HRV-16, and RNA and protein was harvested from cell lysates 96 hrs. following infection and supernatant was collected 48 and 96 hrs. following infection. In additional experiments cultures were pre-infected with HRV-16, or pre-treated with recombinant IFN-ß1 or IFN-λ2 before SARS-CoV-2 infection. RESULTS: Despite significant between-donor heterogeneity SARS-CoV-2 replicated 100 times more efficiently than HRV-16. IFNB1, INFL2, and CXCL10 gene expression and protein production following HRV-16 infection was significantly greater than following SARS-CoV-2. IFN gene expression and protein production were inversely correlated with SARS-CoV-2 replication. Treatment of cultures with recombinant IFNß1 or IFNλ2, or pre-infection of cultures with HRV-16, markedly reduced SARS-CoV-2 replication. DISCUSSION: In addition to marked between-donor heterogeneity in IFN responses and viral replication, SARS-CoV-2 elicits a less robust IFN response in primary AEC cultures than does rhinovirus, and heterologous rhinovirus infection, or treatment with recombinant IFN-ß1 or IFN-λ2, markedly reduces SARS-CoV-2 replication.

11.
Clin Chem ; 68(1): 143-152, 2021 12 30.
Article in English | MEDLINE | ID: mdl-34286830

ABSTRACT

BACKGROUND: The urgent need for massively scaled clinical testing for SARS-CoV-2, along with global shortages of critical reagents and supplies, has necessitated development of streamlined laboratory testing protocols. Conventional nucleic acid testing for SARS-CoV-2 involves collection of a clinical specimen with a nasopharyngeal swab in transport medium, nucleic acid extraction, and quantitative reverse-transcription PCR (RT-qPCR). As testing has scaled across the world, the global supply chain has buckled, rendering testing reagents and materials scarce. To address shortages, we developed SwabExpress, an end-to-end protocol developed to employ mass produced anterior nares swabs and bypass the requirement for transport media and nucleic acid extraction. METHODS: We evaluated anterior nares swabs, transported dry and eluted in low-TE buffer as a direct-to-RT-qPCR alternative to extraction-dependent viral transport media. We validated our protocol of using heat treatment for viral inactivation and added a proteinase K digestion step to reduce amplification interference. We tested this protocol across archived and prospectively collected swab specimens to fine-tune test performance. RESULTS: After optimization, SwabExpress has a low limit of detection at 2-4 molecules/µL, 100% sensitivity, and 99.4% specificity when compared side by side with a traditional RT-qPCR protocol employing extraction. On real-world specimens, SwabExpress outperforms an automated extraction system while simultaneously reducing cost and hands-on time. CONCLUSION: SwabExpress is a simplified workflow that facilitates scaled testing for COVID-19 without sacrificing test performance. It may serve as a template for the simplification of PCR-based clinical laboratory tests, particularly in times of critical shortages during pandemics.


Subject(s)
COVID-19 Nucleic Acid Testing/methods , COVID-19 , COVID-19/diagnosis , Clinical Laboratory Techniques , Humans , RNA, Viral/isolation & purification , Real-Time Polymerase Chain Reaction , SARS-CoV-2/isolation & purification , Sensitivity and Specificity , Specimen Handling
12.
bioRxiv ; 2021 Apr 10.
Article in English | MEDLINE | ID: mdl-33851164

ABSTRACT

Despite the great promise of vaccines, the COVID-19 pandemic is ongoing and future serious outbreaks are highly likely, so that multi-pronged containment strategies will be required for many years. Nanobodies are the smallest naturally occurring single domain antigen binding proteins identified to date, possessing numerous properties advantageous to their production and use. We present a large repertoire of high affinity nanobodies against SARS-CoV-2 Spike protein with excellent kinetic and viral neutralization properties, which can be strongly enhanced with oligomerization. This repertoire samples the epitope landscape of the Spike ectodomain inside and outside the receptor binding domain, recognizing a multitude of distinct epitopes and revealing multiple neutralization targets of pseudoviruses and authentic SARS-CoV-2, including in primary human airway epithelial cells. Combinatorial nanobody mixtures show highly synergistic activities, and are resistant to mutational escape and emerging viral variants of concern. These nanobodies establish an exceptional resource for superior COVID-19 prophylactics and therapeutics.

13.
J Exp Med ; 218(5)2021 05 03.
Article in English | MEDLINE | ID: mdl-33724365

ABSTRACT

SAMD9L is an interferon-induced tumor suppressor implicated in a spectrum of multisystem disorders, including risk for myeloid malignancies and immune deficiency. We identified a heterozygous de novo frameshift variant in SAMD9L in an infant with B cell aplasia and clinical autoinflammatory features who died from respiratory failure with chronic rhinovirus infection. Autopsy demonstrated absent bone marrow and peripheral B cells as well as selective loss of Langerhans and Purkinje cells. The frameshift variant led to expression of a truncated protein with interferon treatment. This protein exhibited a gain-of-function phenotype, resulting in interference in global protein synthesis via inhibition of translational elongation. Using a mutational scan, we identified a region within SAMD9L where stop-gain variants trigger a similar translational arrest. SAMD9L variants that globally suppress translation had no effect or increased mRNA transcription. The complex-reported phenotype likely reflects lineage-dominant sensitivities to this translation block. Taken together, our findings indicate that interferon-triggered SAMD9L gain-of-function variants globally suppress translation.


Subject(s)
Frameshift Mutation , Gene Expression Regulation/genetics , Germ-Line Mutation , Protein Biosynthesis/genetics , Tumor Suppressor Proteins/genetics , A549 Cells , B-Lymphocytes/metabolism , B-Lymphocytes/pathology , Fatal Outcome , Female , Gene Expression Regulation/drug effects , HEK293 Cells , Heterozygote , Humans , Infant, Newborn , Interferons/pharmacology , Myelodysplastic Syndromes/genetics , Myelodysplastic Syndromes/metabolism , Tumor Suppressor Proteins/metabolism , Whole Genome Sequencing
14.
Methods Protoc ; 4(1)2021 Jan 07.
Article in English | MEDLINE | ID: mdl-33430421

ABSTRACT

Given that the airway epithelium is the initial site of infection, study of primary human airway epithelial cells (AEC) infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) will be crucial to improved understanding of viral entry factors and innate immune responses to the virus. Centers for Disease Control and Prevention (CDC) guidance recommends work with live SARS-CoV-2 in cell culture be conducted in a Biosafety Level 3 (BSL-3) laboratory. To facilitate downstream assays of materials from experiments there is a need for validated protocols for SARS-CoV-2 inactivation to facilitate safe transfer of material out of a BSL-3 laboratory. We propagated stocks of SARS-CoV-2, then evaluated the effectiveness of heat (65 °C) or ultraviolet (UV) light inactivation. We infected differentiated human primary AECs with SARS-CoV-2, then tested protocols designed to inactivate SARS-CoV-2 in supernatant, protein isolate, RNA, and cells fixed for immunohistochemistry by exposing Vero E6 cells to materials isolated/treated using these protocols. Heating to 65 °C for 10 min or exposing to UV light fully inactivated SARS-CoV-2. Furthermore, we found in SARS-CoV-2-infected primary AEC cultures that treatment of supernatant with UV light, isolation of RNA with Trizol®, isolation of protein using a protocol including sodium dodecyl sulfate (SDS) 0.1% and Triton X100 1%, and fixation of AECs using 10% formalin and Triton X100 1%, each fully inactivated SARS-CoV-2.

15.
bioRxiv ; 2021 Apr 29.
Article in English | MEDLINE | ID: mdl-32511368

ABSTRACT

BACKGROUND: The urgent need for massively scaled clinical testing for SARS-CoV-2, along with global shortages of critical reagents and supplies, has necessitated development of streamlined laboratory testing protocols. Conventional nucleic acid testing for SARS-CoV-2 involves collection of a clinical specimen with a nasopharyngeal swab in transport medium, nucleic acid extraction, and quantitative reverse transcription PCR (RT-qPCR) (1). As testing has scaled across the world, the global supply chain has buckled, rendering testing reagents and materials scarce (2). To address shortages, we developed SwabExpress, an end-to-end protocol developed to employ mass produced anterior nares swabs and bypass the requirement for transport media and nucleic acid extraction. METHODS: We evaluated anterior nares swabs, transported dry and eluted in low-TE buffer as a direct-to-RT-qPCR alternative to extraction-dependent viral transport media. We validated our protocol of using heat treatment for viral activation and added a proteinase K digestion step to reduce amplification interference. We tested this protocol across archived and prospectively collected swab specimens to fine-tune test performance. RESULTS: After optimization, SwabExpress has a low limit of detection at 2-4 molecules/uL, 100% sensitivity, and 99.4% specificity when compared side-by-side with a traditional RT-qPCR protocol employing extraction. On real-world specimens, SwabExpress outperforms an automated extraction system while simultaneously reducing cost and hands-on time. CONCLUSION: SwabExpress is a simplified workflow that facilitates scaled testing for COVID-19 without sacrificing test performance. It may serve as a template for the simplification of PCR-based clinical laboratory tests, particularly in times of critical shortages during pandemics.

16.
J Biol Chem ; 296: 100076, 2021.
Article in English | MEDLINE | ID: mdl-33187989

ABSTRACT

Airway inflammation is a critical feature of lower respiratory tract infections caused by viruses such as respiratory syncytial virus (RSV). A growing body of literature has demonstrated the importance of extracellular matrix changes such as the accumulation of hyaluronan (HA) and versican in the subepithelial space in promoting airway inflammation; however, whether these factors contribute to airway inflammation during RSV infection remains unknown. To test the hypothesis that RSV infection promotes inflammation via altered HA and versican production, we studied an ex vivo human bronchial epithelial cell (BEC)/human lung fibroblast (HLF) coculture model. RSV infection of BEC/HLF cocultures led to decreased hyaluronidase expression by HLFs, increased accumulation of HA, and enhanced adhesion of U937 cells as would be expected with increased HA. HLF production of versican was not altered following RSV infection; however, BEC production of versican was significantly downregulated following RSV infection. In vivo studies with epithelial-specific versican-deficient mice [SPC-Cre(+) Vcan-/-] demonstrated that RSV infection led to increased HA accumulation compared with control mice, which also coincided with decreased hyaluronidase expression in the lung. SPC-Cre(+) Vcan-/- mice demonstrated enhanced recruitment of monocytes and neutrophils in bronchoalveolar lavage fluid and increased neutrophils in the lung compared with SPC-Cre(-) RSV-infected littermates. Taken together, these data demonstrate that altered extracellular matrix accumulation of HA occurs following RSV infection and may contribute to airway inflammation. In addition, loss of epithelial expression of versican promotes airway inflammation during RSV infection further demonstrating that versican's role in inflammatory regulation is complex and dependent on the microenvironment.


Subject(s)
Hyaluronic Acid/biosynthesis , Lung/metabolism , Respiratory Syncytial Virus Infections/metabolism , Versicans/genetics , Animals , Bronchoalveolar Lavage Fluid , Coculture Techniques , Epithelial Cells/metabolism , Humans , Hyaluronan Synthases/genetics , Hyaluronoglucosaminidase/genetics , Lung/cytology , Lung/enzymology , Mice , U937 Cells
18.
Front Immunol ; 10: 3159, 2019.
Article in English | MEDLINE | ID: mdl-32047499

ABSTRACT

Human lung fibroblasts (HLFs) treated with the viral mimetic polyinosine-polycytidylic acid (poly I:C) form an extracellular matrix (ECM) enriched in hyaluronan (HA) that avidly binds monocytes and lymphocytes. Mast cells are important innate immune cells in both asthma and acute respiratory infections including respiratory syncytial virus (RSV); however, the effect of RSV on HA dependent mast cell adhesion and/or function is unknown. To determine if RSV infection of HLFs leads to the formation of a HA-enriched ECM that binds and enhances mast cell activity primary HLFs were infected with RSV for 48 h prior to leukocyte binding studies using a fluorescently labeled human mast cell line (LUVA). Parallel HLFs were harvested for characterization of HA production by ELISA and size exclusion chromatography. In separate experiments, HLFs were infected as above for 48 h prior to adding LUVA cells to HLF wells. Co-cultures were incubated for 48 h at which point media and cell pellets were collected for analysis. The role of the hyaladherin tumor necrosis factor-stimulated gene 6 (TSG-6) was also assessed using siRNA knockdown. RSV infection of primary HLFs for 48 h enhanced HA-dependent LUVA binding assessed by quantitative fluorescent microscopy. This coincided with increased HLF HA synthase (HAS) 2 and HAS3 expression and decreased hyaluronidase (HYAL) 2 expression leading to increased HA accumulation in the HLF cell layer and the presence of larger HA fragments. Separately, LUVAs co-cultured with RSV-infected HLFs for 48 h displayed enhanced production of the mast cell proteases, chymase, and tryptase. Pre-treatment with the HA inhibitor 4-methylumbelliferone (4-MU) and neutralizing antibodies to CD44 (HA receptor) decreased mast cell protease expression in co-cultured LUVAs implicating a direct role for HA. TSG-6 expression was increased over the 48-h infection. Inhibition of HLF TSG-6 expression by siRNA knockdown led to decreased LUVA binding suggesting an important role for this hyaladherin for LUVA adhesion in the setting of RSV infection. In summary, RSV infection of HLFs contributes to inflammation via HA-dependent mechanisms that enhance mast cell binding as well as mast cell protease expression via direct interactions with the ECM.


Subject(s)
Extracellular Matrix/immunology , Fibroblasts , Hyaluronic Acid/metabolism , Mast Cells , Respiratory Syncytial Virus Infections/immunology , Cell Adhesion/immunology , Cells, Cultured , Chymases/biosynthesis , Coculture Techniques , Extracellular Matrix/chemistry , Extracellular Matrix/metabolism , Fibroblasts/immunology , Fibroblasts/metabolism , Fibroblasts/virology , Humans , Lung/immunology , Lung/virology , Mast Cells/immunology , Mast Cells/metabolism , Respiratory Syncytial Virus, Human , Tryptases/biosynthesis
19.
Sci Rep ; 8(1): 15768, 2018 10 25.
Article in English | MEDLINE | ID: mdl-30361541

ABSTRACT

Airway remodeling may contribute to decreased lung function in asthmatic children. Bronchial epithelial cells (BECs) may regulate fibroblast expression of extracellular matrix (ECM) constituents and fibroblast-to-myofibroblast transition (FMT). Our objective was to determine if human lung fibroblast (HLF) expression of collagen I (COL1A1), hyaluronan synthase 2 (HAS2), and the FMT marker alpha-smooth muscle actin (α-SMA) by HLFs conditioned by BECs from asthmatic and healthy children correlate with lung function measures and exacerbation history among BEC donors. BECs from asthmatic (n = 23) and healthy children (n = 15) were differentiated at an air-liquid interface (ALI) and then co-cultured with HLFs for 96 hours. Expression of COL1A1, HAS2, and α-SMA by HLFs was determined by quantitative polymerase chain reaction (qPCR). FMT was quantified by measuring HLF cytoskeletal α-SMA by flow cytometry. Pro-collagen Iα1, hyaluronan (HA), and PGE2 were measured in BEC-HLF supernatant. Correlations between lung function measures of BEC donors, and COL1A1, HAS2, and α-SMA gene expression, as well as supernatant concentrations of HA, pro-collagen Iα1, hyaluronan (HA), and PGE2 were assessed. We observed that expression of α-SMA and COL1A1 by HLFs co-cultured with asthmatic BECs was negatively correlated with BEC donor lung function. BEC-HLF supernatant concentrations of pro-collagen Iα1 were negatively correlated, and PGE2 concentrations positively correlated, with asthmatic BEC donor lung function. Expression of HAS2, but not α-SMA or COL1A1, was greater by HLFs co-cultured with asthmatic BECs from donors with a history of severe exacerbations than by HLFs co-cultured with BECs from donors who lacked a history of severe exacerbations. In conclusion, α-SMA and COL1A1 expression by HLFs co-cultured with BECs from asthmatic children were negatively correlated with lung function measures, supporting our hypothesis that epithelial regulation of HLFs and airway deposition of ECM constituents by HLFs contributes to lung function deficits among asthmatic children. Furthermore, epithelial regulation of airway HAS2 may influence the susceptibility of children with asthma to experience severe exacerbations. Finally, epithelial-derived PGE2 is a potential regulator of airway FMT and HLF production of collagen I that should be investigated further in future studies.


Subject(s)
Asthma/genetics , Asthma/physiopathology , Bronchi/pathology , Epithelial Cells/metabolism , Epithelial Cells/pathology , Fibroblasts/metabolism , Gene Expression Regulation , Tissue Donors , Actins/metabolism , Adolescent , Asthma/pathology , Child , Collagen Type I/metabolism , Cytoskeleton/metabolism , Dinoprostone/metabolism , Female , Humans , Hyaluronan Synthases/metabolism , Hyaluronic Acid/metabolism , Male
20.
BMC Pulm Med ; 18(1): 91, 2018 May 29.
Article in English | MEDLINE | ID: mdl-29843677

ABSTRACT

BACKGROUND: An increasing number of studies using primary human bronchial epithelial cells (BECs) have reported intrinsic differences in the expression of several genes between cells from asthmatic and non-asthmatic donors. The stability of gene expression by primary BECs with increasing cell passage number has not been well characterized. METHODS: To determine if expression by primary BECs from asthmatic and non-asthmatic children of selected genes associated with airway remodeling, innate immune response, immunomodulatory factors, and markers of differentiated airway epithelium, are stable over increasing cell passage number, we studied gene expression patterns in passages 1, 2, 3, 4, and 5 BECs from asthmatic (n = 6) and healthy (n = 6) subjects that were differentiated at an air-liquid interface. RNA was harvested from BECs and RT-PCR was performed for TGFß1, TGFß2, activin A, FSTL3, MUC5AC, TSLP, IL-33, CXCL10, IFIH1, p63, KT5, TUBB4A, TJP1, OCLN, and FOXJ1. RESULTS: Expression of TGFß1, TGFß2, activin A, FSTL3, MUC5AC, CXCL10, IFIH1, p63, KT5, TUBB4A, TJP1, OCLN, and FOXJ1 by primary BECs from asthmatic and healthy children was stable with no significant differences between passages 1, 2 and 3; however, gene expression at cell passages 4 and 5 was significantly greater and more variable compared to passage 1 BECs for many of these genes. IL-33 and FOXJ1 expression was also stable between passages 1 through 3, however, expression at passages 4 and 5 was significantly lower than by passage 1 BECs. TSLP, p63, and KRT5 expression was stable across BEC passages 1 through 5 for both asthmatic and healthy BECs. CONCLUSIONS: These observations illustrate the importance of using BECs from passage ≤3 when studying gene expression by asthmatic and non-asthmatic primary BECs and characterizing the expression pattern across increasing cell passage number for each new gene studied, as beyond passage 3 genes expressed by primary BECs appear to less accurately model in vivo airway epithelial gene expression.


Subject(s)
Asthma , Bronchi , Epithelial Cells , Adolescent , Airway Remodeling/physiology , Asthma/diagnosis , Asthma/pathology , Asthma/physiopathology , Blood-Air Barrier/metabolism , Bronchi/metabolism , Bronchi/pathology , Cell Culture Techniques/methods , Cell Proliferation/physiology , Child , Epithelial Cells/metabolism , Epithelial Cells/pathology , Female , Genome-Wide Association Study , Humans , Immunity, Innate/physiology , Immunologic Factors/metabolism , Male , Paracrine Communication/physiology , Transcriptome
SELECTION OF CITATIONS
SEARCH DETAIL
...