Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Chem Chem Phys ; 26(24): 16980-16988, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38842434

ABSTRACT

The human steroidogenic cytochrome P450 CYP17A1 catalyzes two types of reactions in the biosynthetic pathway leading from pregnenolone to testosterone and several other steroid hormones. The first is the hydroxylation of pregnenolone or progesterone to the corresponding 17α-hydroxy steroid, followed by a lyase reaction that converts these 17α-hydroxy intermediates to the androgens dehydroepiandrosterone and androstenedione, respectively. cytochrome b5 (cytb5) is known to act as both an effector and electron donor for the lyase oxidations, markedly stimulating the rate of the lyase reaction in its presence relative to the rate in its absence. Extensive sequential backbone 1H,15N and 13C nuclear magnetic resonance assignments have now been made for oxidized CYP17A1 bound to the prostate cancer drug and inhibitor abiraterone. This is the first eukaryotic P450 for which such assignments are now available. These assignments allow more complete interpretation of the structural perturbations observed upon cytb5 addition. Possible mechanism(s) for the effector activity of cytb5 are discussed in light of this new information.


Subject(s)
Cytochromes b5 , Steroid 17-alpha-Hydroxylase , Steroid 17-alpha-Hydroxylase/metabolism , Steroid 17-alpha-Hydroxylase/chemistry , Cytochromes b5/metabolism , Cytochromes b5/chemistry , Humans , Nuclear Magnetic Resonance, Biomolecular , Protein Binding , Androstenes/chemistry , Androstenes/metabolism , Protein Conformation , Oxidation-Reduction , Magnetic Resonance Spectroscopy
2.
Methods Enzymol ; 689: 3-38, 2023.
Article in English | MEDLINE | ID: mdl-37802575

ABSTRACT

Six cytochrome P450 enzymes are involved in human steroidogenesis, converting cholesterol to sex steroids, mineralocorticoids, and glucocorticoids. While early work was accomplished with steroidogenic P450 orthologs from more accessible sources, knowledge of basic biochemistry through successful drug design have been greatly facilitated by recombinantly-expressed, highly purified human versions of these membrane proteins. Many membrane proteins are difficult to express and purify and are unstable. Membrane P450 expression in E. coli has been facilitated by modification and/or truncation of the membrane-interacting N-terminus, while metal-affinity resins and histidine-tagging greatly facilitates purification. However, substantial optimization is still frequently required to maintain protein stability. Over time, a generalized three-column purification scheme has been developed and tweaked to generate substantial quantities of fully active, highly purified human cytochrome P450 enzymes that have made possible the application of many structural, biochemical, and biophysical techniques to elucidate the mysteries of these critical human enzymes.


Subject(s)
Cytochrome P-450 Enzyme System , Escherichia coli , Humans , Escherichia coli/genetics , Escherichia coli/metabolism , Cytochrome P-450 Enzyme System/metabolism , Metals , Membrane Proteins
3.
Commun Chem ; 6(1): 183, 2023 Sep 02.
Article in English | MEDLINE | ID: mdl-37660137

ABSTRACT

Alkyl isonitriles, R-NC, have previously been shown to ligate the heme (haem) iron of cytochromes P450 in both accessible oxidation states (ferrous, Fe2+, and ferric, Fe3+). Herein, the preparation of four steroid-derived isonitriles and their interactions with several P450s, including the steroidogenic CYP17A1 and CYP106A2, as well as the more promiscuous drug metabolizers CYP3A4 and CYP2D6, is described. It was found that successful ligation of the heme iron by the isonitrile functionality for a given P450 depends on both the position and stereochemistry of the isonitrile on the steroid skeleton. Spectral studies indicate that isonitrile ligation of the ferric heme is stable upon reduction to the ferrous form, with reoxidation resulting in the original complex. A crystallographic structure of CYP17A1 with an isonitrile derived from pregnanalone further confirmed the interaction and identified the absolute stereochemistry of the bound species.

SELECTION OF CITATIONS
SEARCH DETAIL
...