Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Neurosci ; 39(42): 8291-8304, 2019 10 16.
Article in English | MEDLINE | ID: mdl-31308097

ABSTRACT

Regulator of G-protein signaling 4 (RGS4) is a potent modulator of G-protein-coupled receptor signal transduction that is expressed throughout the pain matrix. Here, we use genetic mouse models to demonstrate a role of RGS4 in the maintenance of chronic pain states in male and female mice. Using paradigms of peripheral inflammation and nerve injury, we show that the prevention of RGS4 action leads to recovery from mechanical and cold allodynia and increases the motivation for wheel running. Similarly, RGS4KO eliminates the duration of nocifensive behavior in the second phase of the formalin assay. Using the Complete Freud's Adjuvant (CFA) model of hindpaw inflammation we also demonstrate that downregulation of RGS4 in the adult ventral posterolateral thalamic nuclei promotes recovery from mechanical and cold allodynia. RNA sequencing analysis of thalamus (THL) from RGS4WT and RGS4KO mice points to many signal transduction modulators and transcription factors that are uniquely regulated in CFA-treated RGS4WT cohorts. Ingenuity pathway analysis suggests that several components of glutamatergic signaling are differentially affected by CFA treatment between RGS4WT and RGS4KO groups. Notably, Western blot analysis shows increased expression of metabotropic glutamate receptor 2 in THL synaptosomes of RGS4KO mice at time points at which they recover from mechanical allodynia. Overall, our study provides information on a novel intracellular pathway that contributes to the maintenance of chronic pain states and points to RGS4 as a potential therapeutic target.SIGNIFICANCE STATEMENT There is an imminent need for safe and efficient chronic pain medications. Regulator of G-protein signaling 4 (RGS4) is a multifunctional signal transduction protein, widely expressed in the pain matrix. Here, we demonstrate that RGS4 plays a prominent role in the maintenance of chronic pain symptoms in male and female mice. Using genetically modified mice, we show a dynamic role of RGS4 in recovery from symptoms of sensory hypersensitivity deriving from hindpaw inflammation or hindlimb nerve injury. We also demonstrate an important role of RGS4 actions in gene expression patterns induced by chronic pain states in the mouse thalamus. Our findings provide novel insight into mechanisms associated with the maintenance of chronic pain states and demonstrate that interventions in RGS4 activity promote recovery from sensory hypersensitivity symptoms.


Subject(s)
Chronic Pain/metabolism , Hyperalgesia/metabolism , RGS Proteins/metabolism , Thalamic Nuclei/metabolism , Animals , Chronic Pain/genetics , Down-Regulation , Female , Hyperalgesia/genetics , Male , Mice , Mice, Knockout , Pain Measurement , RGS Proteins/genetics , Sex Factors , Signal Transduction/physiology
2.
Orthop J Sports Med ; 5(8): 2325967117723608, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28868322

ABSTRACT

BACKGROUND: Chondrolabral damage is commonly observed in patients with cam-type femoroacetabular impingement (FAI). Chondral flap reattachment has recently been proposed as a possible preservation technique. PURPOSE/HYPOTHESIS: The purpose of this study was to determine the viability and tissue quality of chondral flaps from patients with FAI at the time of arthroscopy. It was hypothesized that chondral flaps from patients with cam lesions of the hip would exhibit less viability and greater tissue degeneration than would those of a matched control group. STUDY DESIGN: Cohort study; Level of evidence, 2. METHODS: Patients with cam-type FAI who were treated with hip arthroscopy between 2014 and 2016 were asked to participate in this study. The cartilage lesions were localized and classified intraoperatively according to Beck classification. A chondral flap (study group) and a cartilage sample (control group) were obtained from each patient for histologic evaluation. Cellular viability and tissue quality were examined and compared in both groups. Cellular viability was determined with live/dead staining, and tissue quality was evaluated using safranin O/fast green, hematoxylin and eosin (H&E) staining, and immunohistochemistry for collagen II. Osteoarthritis Research Society International (OARSI) grading was used for quality assessment, and Image J software was used to calculate the percentage of tissue viability and Col II stain. RESULTS: A total of 10 male patients with a mean age of 38.4 years (range, 30-55 years) were enrolled. All chondral flaps were classified as Beck grade 4. The mean cellular viability of the chondral flaps was reduced (54.6% ± 25.6%), and they were found to be degenerated (OARSI grade, 4 ± 1.27). Control samples also had reduced viability (38.8% ± 30.3%) and were degenerative (OARSI grade, 3.5 ± 1.38). There was no statistically significant intergroup difference for viability (P = .203) or OARSI grade (P = .645), nor was there an intragroup correlation between viability and OARSI grade (P > .05). A significant negative correlation (r = -0.9, P = .035) was found between OARSI grade and collagen II percentage scale in 5 selected samples. CONCLUSION: Despite appearing normal macroscopically, the chondral flaps from patients with cam-type FAI displayed loss of viability and tissue degeneration. In addition, control samples obtained away from the injury area also displayed cartilage damage and degeneration. Careful consideration should be taken when attempting to reattach the chondral flap.

3.
Arthrosc Tech ; 6(1): e133-e136, 2017 Feb.
Article in English | MEDLINE | ID: mdl-28373951

ABSTRACT

Hip preservation surgical techniques have steadily increased in the recent past. Therefore, precise knowledge of the vascular system of the hip and pelvis is critical for avoidance of possibly devastating complications during surgery. A colored latex injection in the common iliac artery of cadavers allows for a complete staining of the hip and pelvis vascular system. This technique creates more resilient vessels, whereas coloration with dye causes the vessels to be highly visible in comparison with the surrounding tissue. The proposed colored latex-dye solution injection allows for complete identification of the circulatory system of the lower extremity with specific focus on the hip and pelvis. This technique is simple, reproducible, and easily usable by orthopaedic surgeons in the laboratory to better understand the vascularization of the lower limb. The purpose of this technical note is to describe our technique for the injection of latex-dye solution in the common iliac artery, followed by dissection to key vascular structures of the hip and pelvis.

4.
Biometals ; 29(4): 551-71, 2016 08.
Article in English | MEDLINE | ID: mdl-27457587

ABSTRACT

Siderophores are iron-chelating molecules produced by microbes when intracellular iron concentrations are low. Low iron triggers a cascade of gene activation, allowing the cell to survive due to the synthesis of important proteins involved in siderophore synthesis and transport. Generally, siderophores are classified by their functional groups as catecholates, hydroxamates and hydroxycarboxylates. Although other chemical structural modifications and functional groups can be found. The functional groups participate in the iron-chelating process when the ferri-siderophore complex is formed. Classified as acidophiles, alkaliphiles, halophiles, thermophiles, psychrophiles, piezophiles, extremophiles have particular iron requirements depending on the environmental conditions in where they grow. Most of the work done in siderophore production by extremophiles is based in siderophore concentration and/or genomic studies determining the presence of siderophore synthesis and transport genes. Siderophores produced by extremophiles are not well known and more work needs to be done to elucidate chemical structures and their role in microorganism survival and metal cycling in extreme environments.


Subject(s)
Bacteria/metabolism , Iron Chelating Agents/metabolism , Iron/metabolism , Siderophores/metabolism , Iron/chemistry , Iron Chelating Agents/chemistry , Molecular Structure , Siderophores/chemistry
5.
Extremophiles ; 20(3): 261-74, 2016 May.
Article in English | MEDLINE | ID: mdl-26888357

ABSTRACT

Two haloalkaliphilic bacteria isolated from industrial brine solutions were characterized via molecular, physiological, and in silico metabolic pathway analyses. Genomes from the organisms, designated Halomonas BC1 and BC2, were sequenced; 16S ribosomal subunit-based phylogenetic analysis revealed a high level of similarity to each other and to Halomonas meridiana. Both strains were moderate halophiles with near optimal specific growth rates (≥60 % µ max) observed over <0.1-5 % (w/v) NaCl and pH ranging from 7.4 to 10.2. Isolate BC1 was further characterized by measuring uptake or synthesis of compatible solutes under different growth conditions; in complex medium, uptake and accumulation of external glycine betaine was observed while ectoine was synthesized de novo in salts medium. Transcriptome analysis of isolate BC1 grown on glucose or citrate medium measured differences in glycolysis- and gluconeogenesis-based metabolisms, respectively. The annotated BC1 genome was used to build an in silico, genome-scale stoichiometric metabolic model to study catabolic energy strategies and compatible solute synthesis under gradients of oxygen and nutrient availability. The theoretical analysis identified energy metabolism challenges associated with acclimation to high salinity and high pH. The study documents central metabolism data for the industrially and scientifically important haloalkaliphile genus Halomonas.


Subject(s)
Energy Metabolism , Halomonas/metabolism , Metabolome , Salt Tolerance , Transcriptome , Halomonas/classification , Halomonas/genetics , Halomonas/isolation & purification , RNA, Ribosomal, 16S/genetics , Salinity
6.
Extremophiles ; 19(6): 1183-92, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26439615

ABSTRACT

Soap Lake, located in Washington State, is a naturally occurring saline and alkaline lake. Several organisms inhabiting this lake have been identified as producers of siderophores that are unique in structure. Bacterial isolates, enriched from Soap Lake sediment and water samples, were screened for siderophore production using both the chrome azurol S (CAS) agar plate and liquid methods. Bacterial isolate Halomonas sp. SL01 was found to produce relatively high concentrations of siderophores in liquid medium (up to 40 µM). Siderophores from the isolate were separated from the culture supernatant using solid phase extraction and purified by high-performance liquid chromatography (HPLC). Siderophore structure was determined using LC/MS/MS (liquid chromatography/mass spectrometry/mass spectrometry) and fatty acid methyl ester (FAME) GC. Two distinct new families of amphiphilic siderophores were produced by isolate SL01. All siderophores ranged in size from 989 to 1096 atomic mass units and consisted of a conserved peptidic head group (per family), which coordinates iron, coupled to fatty acid moieties. The fatty acyl moieties were C10-C14 in length and some with hydroxyl substitutions at the third α position. These siderophores resembled amphiphilic aquachelin siderophores produced by Halomonas aquamarina strain DS40M3, a marine bacterium as well as siderophores from isolate Halomonas sp. SL28 that was found to produce amphiphilic siderophores. Bacteria thriving under saline and alkaline conditions are capable of producing unique siderophores resembling those produced by microbes inhabiting marine environments.


Subject(s)
Halomonas/metabolism , Lakes/microbiology , Siderophores/chemistry , Surface-Active Agents/chemistry , Cysteine/chemistry , Halomonas/isolation & purification , Phenylalanine/chemistry , Proline/chemistry , Siderophores/metabolism , Surface-Active Agents/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...