Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
mSystems ; 5(1)2020 Jan 14.
Article in English | MEDLINE | ID: mdl-31937680

ABSTRACT

Improvements in growth performance and health are key goals in broiler chicken production. Inclusion of prebiotic galacto-oligosaccharides (GOS) in broiler feed enhanced the growth rate and feed conversion of chickens relative to those obtained with a calorie-matched control diet. Comparison of the cecal microbiota identified key differences in abundances of Lactobacillus spp. Increased levels of Lactobacillus johnsonii in GOS-fed juvenile birds at the expense of Lactobacillus crispatus were linked to improved performance (growth rate and market weight). Investigation of the innate immune responses highlighted increases of ileal and cecal interleukin-17A (IL-17A) gene expression counterposed to a decrease in IL-10. Quantification of the autochthonous Lactobacillus spp. revealed a correlation between bird performance and L. johnsonii abundance. Shifts in the cecal populations of key Lactobacillus spp. of juvenile birds primed intestinal innate immunity without harmful pathogen challenge.IMPORTANCE Improvements in the growth rate of broiler chickens can be achieved through dietary manipulation of the naturally occurring bacterial populations while mitigating the withdrawal of antibiotic growth promoters. Prebiotic galacto-oligosaccharides (GOS) are manufactured as a by-product of dairy cheese production and can be incorporated into the diets of juvenile chickens to improve their health and performance. This study investigated the key mechanisms behind this progression and pinpointed L. johnsonii as a key species that facilitates the enhancements in growth rate and gut health. The study identified the relationships between the GOS diet, L. johnsonii intestinal populations, and cytokine immune effectors to improve growth.

2.
Front Microbiol ; 10: 476, 2019.
Article in English | MEDLINE | ID: mdl-30930877

ABSTRACT

Bacteriophage biocontrol to reduce Campylobacter jejuni levels in chickens can reduce human exposure and disease acquired through the consumption of contaminated poultry products. Investigating changes in the chicken microbiota during phage treatment has not previously been undertaken but is crucial to understanding the system-wide effects of such treatments to establish a sustainable application. A phage cocktail containing two virulent Campylobacter phages was used to treat broiler chickens colonized with C. jejuni HPC5. Campylobacter counts from cecal contents were significantly reduced throughout the experimental period but were most effective 2 days post-treatment showing a reduction of 2.4 log10 CFU g-1 relative to mock-treated Campylobacter colonized controls. The administered phages replicated in vivo to establish stable populations. Bacteriophage predation of C. jejuni was not found to affect the microbiota structure but selectively reduced the relative abundance of C. jejuni without affecting other bacteria.

3.
Front Microbiol ; 10: 3030, 2019.
Article in English | MEDLINE | ID: mdl-32010094

ABSTRACT

Worldwide Campylobacter jejuni is a leading cause of foodborne disease. Contamination of chicken meat with digesta from C. jejuni-positive birds during slaughter and processing is a key route of transmission to humans through the food chain. Colonization of chickens with C. jejuni elicits host innate immune responses that may be modulated by dietary additives to provide a reduction in the number of campylobacters colonizing the gastrointestinal tract and thereby reduce the likelihood of human exposure to an infectious dose. Here we report the effects of prebiotic galacto-oligosaccharide (GOS) on broiler chickens colonized with C. jejuni when challenged at either an early stage in development at 6 days of age or 20 days old when campylobacters are frequently detected in commercial flocks. GOS-fed birds had increased growth performance, but the levels of C. jejuni colonizing the cecal pouches were unchanged irrespective of the age of challenge. Dietary GOS modulated the immune response to C. jejuni by increasing cytokine IL-17A expression at colonization. Correspondingly, reduced diversity of the cecal microbiota was associated with Campylobacter colonization in GOS-fed birds. In birds challenged at 6 days-old the reduction in microbial diversity was accompanied by an increase in the relative abundance of Escherichia spp. Whilst immuno-modulation of the Th17 pro-inflammatory response did not prevent C. jejuni colonization of the intestinal tract of broiler chickens, the study highlights the potential for combinations of prebiotics, and specific competitors (synbiotics) to engage with the host innate immunity to reduce pathogen burdens.

4.
Microbiome ; 6(1): 88, 2018 05 12.
Article in English | MEDLINE | ID: mdl-29753324

ABSTRACT

BACKGROUND: Campylobacters are an unwelcome member of the poultry gut microbiota in terms of food safety. The objective of this study was to compare the microbiota, inflammatory responses, and zootechnical parameters of broiler chickens not exposed to Campylobacter jejuni with those exposed either early at 6 days old or at the age commercial broiler chicken flocks are frequently observed to become colonized at 20 days old. RESULTS: Birds infected with Campylobacter at 20 days became cecal colonized within 2 days of exposure, whereas birds infected at 6 days of age did not show complete colonization of the sample cohort until 9 days post-infection. All birds sampled thereafter were colonized until the end of the study at 35 days (mean 6.1 log10 CFU per g of cecal contents). The cecal microbiota of birds infected with Campylobacter were significantly different to age-matched non-infected controls at 2 days post-infection, but generally, the composition of the cecal microbiota were more affected by bird age as the time post infection increased. The effects of Campylobacter colonization on the cecal microbiota were associated with reductions in the relative abundance of OTUs within the taxonomic family Lactobacillaceae and the Clostridium cluster XIVa. Specific members of the Lachnospiraceae and Ruminococcaceae families exhibit transient shifts in microbial community populations dependent upon the age at which the birds become colonized by C. jejuni. Analysis of ileal and cecal chemokine/cytokine gene expression revealed increases in IL-6, IL-17A, and Il-17F consistent with a Th17 response, but the persistence of the response was dependent on the stage/time of C. jejuni colonization that coincide with significant reductions in the abundance of Clostridium cluster XIVa. CONCLUSIONS: This study combines microbiome data, cytokine/chemokine gene expression with intestinal villus, and crypt measurements to compare chickens colonized early or late in the rearing cycle to provide insights into the process and outcomes of Campylobacter colonization. Early colonization results in a transient growth rate reduction and pro-inflammatory response but persistent modification of the cecal microbiota. Late colonization produces pro-inflammatory responses with changes in the cecal microbiota that will endure in market-ready chickens.


Subject(s)
Campylobacter Infections/immunology , Campylobacter jejuni/isolation & purification , Cecum/microbiology , Gastrointestinal Microbiome/immunology , Intestinal Mucosa/immunology , Intestinal Mucosa/microbiology , Poultry Diseases/immunology , Animals , Campylobacter Infections/microbiology , Campylobacter jejuni/immunology , Chemokines/metabolism , Chickens , Food Safety , Inflammation/immunology , Male , Poultry Diseases/microbiology , Th17 Cells/immunology
5.
Int J Food Microbiol ; 120(1-2): 46-50, 2007 Nov 30.
Article in English | MEDLINE | ID: mdl-17617484

ABSTRACT

The response of bacteria to sub-lethal injury is an important aspect of food microbiology as many inimical processes to which bacteria are subjected during processing are non-lethal. For pathogens like Salmonella and Escherichia coli, the difference in injury levels of exponential phase cells compared to their stationary phase counterparts in this regard is well recognised and evident for a variety of inimical processes. The expression of a range of stress resistance genes under the control of the sigma factor RpoS provides some explanation for the greater resistance of stationary phase cells. However in 1997 the suicide response hypothesis was put forward as an explanation for the observed response of Salmonella and E. coli to sub-lethal stresses. This hypothesis arose as an explanation for the observed protection of Salmonella and E. coli strains to heat and freeze-thaw injury by the presence of a high level of competitor organisms, a protection that had been shown to be RpoS independent. The central tenet of this theory was that under sub-lethal stress bacteria produce a burst of intracellular free radicals and it is these that lead to sub-lethal injury and/or death. Exponential phase cells because of their more active metabolism are more susceptible to this effect and suffer greater damage. This paper reviews the origins of this theory, the evidence for a free radical response and explores the potential mechanisms by which competitor cells produce a protective effect.


Subject(s)
Bacterial Proteins/metabolism , Escherichia coli/metabolism , Food Handling/methods , Food Microbiology , Salmonella/metabolism , Bacterial Proteins/genetics , Colony Count, Microbial , Escherichia coli/cytology , Escherichia coli/genetics , Escherichia coli/physiology , Free Radicals/metabolism , Models, Biological , Salmonella/cytology , Salmonella/genetics , Salmonella/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...