Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Clin Endocrinol (Oxf) ; 73(3): 404-12, 2010 Sep.
Article in English | MEDLINE | ID: mdl-20550534

ABSTRACT

OBJECTIVE: Patients who appear to have both stimulating and blocking TSHR autoantibodies in their sera have been described, but the two activities have not been separated and analysed. We now describe the isolation and detailed characterization of a blocking type TSHR monoclonal autoantibody and a stimulating type TSHR monoclonal autoantibody from a single sample of peripheral blood lymphocytes. DESIGN, PATIENTS AND MEASUREMENTS: Two heterohybridoma cell lines secreting TSHR autoantibodies were isolated using standard techniques from the lymphocytes of a patient with hypothyroidism and high levels of TSHR autoantibodies (160 units/l by inhibition of TSH binding). The ability of the two new monoclonal antibodies (MAbs; K1-18 and K1-70) to bind to the TSHR and compete with TSH or TSHR antibody binding was analysed. Furthermore, the effects of K1-18 and K1-70 on cyclic AMP production in Chinese hamster ovary cells (CHO) cells expressing the TSHR were investigated. RESULTS: One MAb (K1-18) was a strong stimulator of cyclic AMP production in TSHR-transfected CHO cells and the other (K1-70) blocked stimulation of the TSHR by TSH, K1-18, other thyroid-stimulating MAbs and patient serum stimulating type TSHR autoantibodies. Both K1-18 (IgG1 kappa) and K1-70 (IgG1 lambda) bound to the TSHR with high affinity (0.7 x 10(10) l/mol and 4 x 10(10) l/mol, respectively), and this binding was inhibited by unlabelled K1-18 and K1-70, other thyroid-stimulating MAbs and patient serum TSHR autoantibodies with stimulating or blocking activities. V region gene analysis indicated that K1-18 and K1-70 heavy chains used the same V region germline gene but different D and J germline genes as well as having different light chains. Consequently, the two antibodies have evolved separately from different B cell clones. CONCLUSIONS: This study provides proof that a patient can produce a mixture of blocking and stimulating TSHR autoantibodies at the same time.


Subject(s)
Antibodies, Monoclonal/immunology , Autoantibodies/immunology , Hypothyroidism/immunology , Receptors, Thyrotropin/immunology , Adenosine Monophosphate/metabolism , Animals , Antibodies, Monoclonal/metabolism , Antibodies, Monoclonal/pharmacology , Autoantibodies/metabolism , Autoantibodies/pharmacology , Binding, Competitive/drug effects , Binding, Competitive/immunology , CHO Cells , Cells, Cultured , Cricetinae , Cricetulus , Female , Humans , Hybridomas , Hypothyroidism/blood , Immunoglobulin Joining Region/immunology , Immunoglobulin Joining Region/metabolism , Immunoglobulin Light Chains/immunology , Immunoglobulin Light Chains/metabolism , Immunoglobulin Variable Region/immunology , Immunoglobulin Variable Region/metabolism , Iodine Radioisotopes , Middle Aged , Protein Binding/drug effects , Protein Binding/immunology , Receptors, Thyrotropin/genetics , Receptors, Thyrotropin/metabolism , Thyrotropin/metabolism
2.
Thyroid ; 18(7): 735-46, 2008 Jul.
Article in English | MEDLINE | ID: mdl-18631002

ABSTRACT

BACKGROUND: Human monoclonal autoantibodies (MAbs) are valuable tools to study autoimmune responses. To date only one human MAb to the thyrotropin (TSH) receptor (TSHR) with stimulating activity has been available. We now describe the detailed characterization of a blocking type human MAb to the TSHR. METHODS: A single heterohybridoma cell line was isolated from the peripheral blood lymphocytes of a patient with severe hypothyroidism (TSH 278 mU/L) using standard techniques. The line stably expresses a TSHR autoantibody (5C9; IgG1/kappa). Ability of 5C9 to bind and compete with 125I-TSH or TSHR antibodies binding to the TSHR was tested using tubes coated with solubilized TSHR. Furthermore, the blocking effects of 5C9 on stimulation of cyclic AMP production was assessed using Chinese hamster ovary (CHO) cells expressing the wild-type human TSHR or TSHRs with amino acid mutations. MAIN OUTCOME: 5C9 IgG bound to the TSHR with high affinity (4 x 10(10) L/mol) and inhibited binding of TSH and a thyroid-stimulating human monoclonal autoantibody (M22) to the receptor. 5C9 IgG preparations inhibited the cyclic AMP-stimulating activities of TSH, M22, serum TSHR autoantibodies and thyroid-stimulating mouse monoclonal antibodies. Furthermore 5C9 reduced the constitutive activity of wild-type TSHR and TSHR with some activating mutations. The effect of different amino acid mutations in the TSHR on 5C9 biological activity was studied and TSHR Lys129Ala or Asp203Ala completely abolished the ability of 5C9 to block TSH-mediated stimulation of cyclic AMP production. CONCLUSIONS: The availability of 5C9 provides new opportunities to investigate the binding and biological activity of TSHR blocking type autoantibodies including studies at the molecular level. Furthermore, monoclonal antibodies such as 5C9 may well provide the basis of new drugs to control TSHR activity including applications in thyroid cancer and Graves' ophthalmopathy.


Subject(s)
Antibodies, Monoclonal/immunology , Antibodies, Monoclonal/pharmacology , Receptors, Thyrotropin/immunology , Thyroid Gland/drug effects , Adult , Animals , Antibodies, Monoclonal/therapeutic use , Autoantibodies/blood , CHO Cells , Cell Line , Cricetinae , Cricetulus , Cyclic AMP/metabolism , Female , Graves Ophthalmopathy/drug therapy , Humans , Hypothyroidism/metabolism , Mutation/genetics , Ovary/cytology , Ovary/drug effects , Ovary/metabolism , Receptors, Thyrotropin/genetics , Receptors, Thyrotropin/metabolism , Thyroid Gland/metabolism , Thyroid Neoplasms/drug therapy
3.
Thyroid ; 17(5): 395-410, 2007 May.
Article in English | MEDLINE | ID: mdl-17542669

ABSTRACT

OBJECTIVE: To analyze interactions between the thyroid-stimulating hormone receptor (TSHR) and a thyroid-stimulating human monoclonal autoantibody (M22) at the molecular level. DESIGN: A complex of part of the TSHR extracellular domain (amino acids 1-260; TSHR260) bound to M22 Fab was prepared and purified. Crystals suitable for X-ray diffraction analysis were obtained and the structure solved at 2.55 A resolution. MAIN OUTCOME: TSHR260 comprises of a curved helical tube and M22 Fab clasps its concave surface at 90 degrees to the tube length axis. The interface buried in the complex is large (2,500 A(2)) and an extensive network of ionic, polar, and hydrophobic bonding is involved in the interaction. There is virtually no movement in the atoms of M22 residues on the binding interface compared to unbound M22 consistent with "lock and key" binding. Mutation of residues showing strong interactions in the structure influenced M22 activity, indicating that the binding detail observed in the complex reflects interactions of M22 with intact, functionally active TSHR. The receptor-binding arrangements of the autoantibody are very similar to those reported for follicle-stimulating hormone (FSH) binding to the FSH receptor (amino acids 1-268) and consequently to those of TSH itself. CONCLUSIONS: It is remarkable that the thyroid-stimulating autoantibody shows almost identical receptor-binding features to TSH although the structures and origins of these two ligands are very different. Furthermore, our structure of the TSHR and its complex with M22 provide foundations for developing new strategies to understand and control both glycoprotein hormone receptor activation and the autoimmune response to the TSHR.


Subject(s)
Immunoglobulins, Thyroid-Stimulating/chemistry , Receptors, Thyrotropin/chemistry , Amino Acid Sequence , Animals , CHO Cells , Cricetinae , Cricetulus , Crystallization , Follicle Stimulating Hormone/chemistry , Humans , Immunoglobulin Fab Fragments/chemistry , Molecular Sequence Data , Mutation , Receptors, FSH/chemistry , Receptors, Thyrotropin/genetics , X-Ray Diffraction
4.
Thyroid ; 16(11): 1077-84, 2006 Nov.
Article in English | MEDLINE | ID: mdl-17123333

ABSTRACT

We have used the human monoclonal TSH receptor (TSHR) autoantibody (M22) as a labeled ligand in competition with individual patient TSHR autoantibodies (TRAb) to estimate their serum concentrations and affinities. TSHR coated tubes, (125)I-labeled M22 IgG and Fab, and patient sera IgG and Fab were used in these studies. In 15 patients with Graves' disease, TRAb concentrations ranged from 50 to 500 ng/mL of serum (5- 60 parts per million of total serum IgG) and TRAb IgG affinities from 3.0 +/- 1.0-6.7 +/- 1.54-10(10) L/mol (mean +/- SD; n=3). Fab fragment affinities were similar to those of intact IgG. Serum TRAb with blocking (TSH antagonist; 4 patients) activity had similar affinities (3.0 +/- 0.25-7.2 +/- 2.2-10(10) L/mol) to TRAb IgG from patients with Graves' disease, but blocking TRAb concentrations were higher (1.7 - 27 mg/mL of serum). The concentrations of TRAb that we observed in the sera of the 15 Graves' patient (0.33 - 3.3 nmol/L) can be compared with that of circulating TSH. In particular, a serum TSH concentration of 100mU/L (0.7 nmol/L) is in the same range as the concentrations of TRAb we observed. Such a TSH concentration (similar to that observed after injection of 0.9 mg of recombinant human TSH) would be expected to cause a similar degree of thyrotoxicosis as seen in Graves' disease. Consequently, the thyroid-stimulating potencies (i.e., activity per mol) of patient serum TRAb and human TSH appear to be of a similar magnitude in vivo as well as in vitro. Overall, our results indicate that serum TRAb affinities are high and show only limited variations between different sera whereas concentrations of the autoantibodies vary widely.


Subject(s)
Autoantibodies/blood , Graves Disease/immunology , Receptors, Thyrotropin/immunology , Thyrotoxicosis/immunology , Antibodies, Monoclonal/pharmacology , Antibody Affinity , Binding, Competitive/immunology , Chromatography, Affinity , Humans , Immunoglobulin Fab Fragments/blood , Immunoglobulin Fab Fragments/pharmacology , Immunoglobulin G/blood , Immunoglobulin G/pharmacology , Immunoglobulins, Thyroid-Stimulating , Iodine Radioisotopes , Receptors, Thyrotropin/metabolism
5.
Thyroid ; 16(12): 1195-206, 2006 Dec.
Article in English | MEDLINE | ID: mdl-17199429

ABSTRACT

The effects of an extensive series of mutations in the TSH receptor (TSHR) leucine-rich domain (LRD) on the ability of thyroid-stimulating monoclonal antibodies (TSMAbs) and TSH to bind to the receptor and stimulate cyclic AMP production in TSHR-transfected CHO cells has been investigated. In addition, the ability of a mouse monoclonal antibody with blocking (i.e., antagonist) activity (RSR-B2) to interact with mutated receptors has been studied. Several amino acids distributed along an extensive part of the concave surface of the LRD were found to be important for binding and stimulation by the thyroid-stimulating human MAb M22 but did not appear to be important for TSH binding and stimulation. Most of these amino acids important for M22 interactions were also found to be important for the stimulating activity of six different mouse TSMAbs and a hamster TSMAb. Furthermore, most of these same amino acids were important for stimulation by TSHR autoantibodies in a panel of sera from patients with Graves' disease. Amino acid R255 was the only residue found to be unimportant for TSH stimulation but critical for stimulation by all thyroid-stimulating antibodies tested (23 patient serum TSHR autoantibodies, M22, and all seven animal TSMAbs). About half the amino acids (all located in the N-terminal part of the LRD) found to be important for M22 activity were also important for the blocking activity of RSR-B2 and although the epitopes for the two MAbs overlap they are different. As the two MAbs have similar affinities, their epitope differences are probably responsible for their different activities. Overall our results indicate that different TSMAbs and different patient sera thyroid-stimulating autoantibodies interact with the same region of the TSHR, but there are subtle differences in the actual amino acids that make contact with the different stimulators.


Subject(s)
Antibodies, Monoclonal/metabolism , Receptors, Thyrotropin/genetics , Thyrotropin/metabolism , Animals , Antigen-Antibody Reactions , CHO Cells , Cricetinae , Cricetulus , Cyclic AMP/biosynthesis , Graves Disease/immunology , Humans , Mice , Models, Molecular , Point Mutation , Protein Structure, Tertiary , Receptors, Thyrotropin/metabolism , Thyrotropin/antagonists & inhibitors , Thyrotropin/physiology , Transfection
6.
Arch Immunol Ther Exp (Warsz) ; 53(4): 345-51, 2005.
Article in English | MEDLINE | ID: mdl-16088319

ABSTRACT

INTRODUCTION: Mouse monoclonal antibodies (mAbs) with the ability to inhibit thyrotropin (TSH) binding to the TSH receptor (TSHR) are useful tools to study TSH-TSHR interaction. The 3C3 mAb we produced was found to inhibit binding of TSH to human (h)TSHR but not to porcine (p)TSHR. MATERIAL/METHODS: Purified 3C3 immunoglobulin G (IgG) and its antibody-binding fragment were prepared using standard methods and their ability to inhibit TSH binding to hTSHR or pTSHR was analyzed using a coated tube assay. The TSHR epitope reactive with 3C3 IgG was determined using Western blotting, ELISA based on peptides corresponding to the TSHR sequence, and the SPOT synthesis technique. RNA was isolated from 3C3 hybridoma cells and the mAb variable (V) region genes were sequenced and analyzed. RESULTS: 3C3 mAb had a 1 x 108 l/mol binding affinity to the hTSHR as assessed by Scatchard analysis. 3C3 reacted with the hTSHR region between amino acids (aa) 212-230, and two aa differences were found between the corresponding regions in the hTSHR and pTSHR. The light chain (LC) genes of 3C3 were derived from the Vk21 germ-line (97.6% homology) and Jk2 genes. The heavy chain (HC) genes were from the V130 germ-line (94.6% homology) combined with a D gene (not identified) and JH3 gene. The replacement/ silent mutation ratios of 6.0 and 6.5 for the LC and the HC V regions, respectively, indicated that 3C3 underwent antigen-driven maturation. CONCLUSIONS: Mouse mAbs of this type should be useful in studying the interactions between the TSHR, TSH, and mAbs in more detail.


Subject(s)
Antibodies, Monoclonal/chemistry , Receptors, Thyrotropin/chemistry , Thyrotropin/chemistry , Amino Acid Sequence , Animals , Blotting, Western , Dose-Response Relationship, Drug , Enzyme-Linked Immunosorbent Assay , Epitopes/chemistry , Humans , Immunoglobulin G/chemistry , Kinetics , Mice , Mice, Inbred BALB C , Molecular Sequence Data , Nucleic Acid Hybridization , Peptides/chemistry , Protein Binding , RNA/chemistry , Receptors, Thyrotropin/genetics , Recombinant Fusion Proteins/chemistry , Reverse Transcriptase Polymerase Chain Reaction , Swine , Time Factors
7.
Thyroid ; 14(12): 991-1011, 2004 Dec.
Article in English | MEDLINE | ID: mdl-15650352

ABSTRACT

We have used the most advanced programs currently available to construct the first three-domain structure of the human thyrotropin receptor (TSHR) using comparative modeling. The model consists of a leucine-rich domain (LRD; amino acids 36-281; porcine ribonuclease inhibitor used as a template for modeling), a cleavage domain (CD; amino acids 282-409; tissue inhibitor of matrix metalloproteinases 2 as template) and transmembrane domain (TMD amino acids 410-699; bovine rhodopsin as template). Models of human, porcine, and bovine TSH were also constructed (human chorionic gonadotropin [hCG] and human follicle stimulating hormone [hFSH] as templates). The LRD has a characteristic horseshoe shape with 10 tandem homologous repeats. The CD consists of beta-barrel and alpha helix structures (OB-like fold) with two disulfide bridges and the structure around these disulfide bridges remains stable after cleavage. The TMD presents the typical seven membrane-spanning helices. The TSH, LRD, CD, and TMD models were brought together in an extensive series of docking experiments. Known features of the TSH-TSHR interaction were used for selection of appropriate complexes that were then validated using a different set of experimental data. A similar approach was used to build a model of a complex between the TSHR and a monoclonal TSHR antibody with weak thyroid stimulating activity. Human thyrotropin (hTSH) alpha chains were found to make contact with many amino acids on the LRD surface and CD surface whereas no interaction between the beta chains and the CD were found. The higher affinity of bovine thyrotropin (bTSH) and porcine thyrotropin (pTSH) (relative to hTSH) for the TSHR is explained well by the models in terms of charge-charge interactions between their alpha chains and the receptor. Experimental observations showing increased sensitivity of the TSHR to hCG after mutation of TSHR Lys209 to Glu are explained well by our model. Furthermore, several mutations in the TMD that are associated with increased TSHR basal activity are predicted from our model to be caused by the formation of new interactions that stabilize the activated form of the TMD.


Subject(s)
Receptors, Thyrotropin/drug effects , Thyrotropin/pharmacology , Animals , Antibodies, Monoclonal , Epitopes/genetics , Humans , Hydrogen Bonding , Immunoglobulin Fab Fragments/immunology , Leucine/physiology , Ligands , Membranes , Mice , Mice, Inbred BALB C , Models, Biological , Models, Molecular , RNA/genetics , RNA/isolation & purification
8.
Thyroid ; 12(12): 1043-50, 2002 Dec.
Article in English | MEDLINE | ID: mdl-12593717

ABSTRACT

Thyrotropin (TSH) receptor monoclonal antibodies (TSHR mAbs) were obtained from cDNA-immunized NMRI mice. Three mAb immunoglobulin Gs (IgGs) (TSmAbs 1-3) that had distinct V(H )and V(L) region sequences stimulated cyclic adenosine monophosphate (cAMP) production in isolated porcine thyroid cells greater than 10x basal and as little as 20 ng/mL (0.13 nmol/L) of TSmAb 1 IgG caused a 2x basal stimulation. TSmAb 1 and 2 Fab fragments were also effective stimulators and thyroid-stimulating activities of the IgGs and Fabs were confirmed using TSHR transfected Chinese hamster ovary (CHO) cells. The TSmAbs also inhibited (125)I-labeled TSH binding to TSHR-coated tubes by 50% or more at concentrations of 1 microg/mL or less and gave 15%-20% inhibition at 20-50 ng/mL. (125)I-labeled TSmAbs bound to TSHR-coated tubes with high affinity (approximately 10(10) L/mol) and this binding was inhibited by TSHR autoantibodies with both TSH agonist and antagonist activities. Inhibition of labeled TSmAb binding by Graves' sera correlated well with inhibition of TSH binding (r = 0.96; n = 18; p < 0.001 for TSmAb 2). The TSmAbs have considerable potential as (1) new probes for TSHR structure-function studies, (2) reagents for new assays for TSHR autoantibodies, and (3) alternatives to recombinant TSH in various in vivo applications.


Subject(s)
Antibodies, Monoclonal/immunology , Graves Disease/immunology , Thyroid Gland/immunology , Animals , Animals, Outbred Strains , Antibodies, Monoclonal/pharmacology , Autoantibodies/immunology , Autoantibodies/pharmacology , Binding, Competitive/immunology , CHO Cells , Cricetinae , Humans , Immunization , Iodine Radioisotopes , Mice , Receptors, Thyrotropin/immunology , Receptors, Thyrotropin/metabolism , Thyrotropin/metabolism , Thyrotropin/pharmacology
9.
Thyroid ; 12(12): 1051-61, 2002 Dec.
Article in English | MEDLINE | ID: mdl-12593718

ABSTRACT

A panel of monoclonal antibodies (mAbs) to the thyrotropin receptor (TSHR) was prepared using three different immunization strategies. The mAbs obtained (n = 138) reacted with linear epitopes covering most of the TSHR extracellular domain and with conformational epitopes. mAbs that bound to five different regions of the TSHR (amino acids [aa] 32-41, aa 36-42, aa 246-260, aa 277-296, and aa 381-385) were able to inhibit (125)I-labeled thyrotropin (TSH) binding to solubilized TSHR preparations. Fab and immunoglobulin G (IgG) preparations were similarly effective inhibitors for mAbs reactive with aa 246-260, aa 277-291 and aa 381-385 suggesting that these three regions of the TSHR are involved in TSH binding. In contrast mAbs reactive with aa 32-41 and aa 36-42 were not effective at inhibiting TSH binding when Fab preparations were used, suggesting that these N terminal regions of the TSHR were less critical for TSH binding. Our studies suggest that three distinct and discontinuous regions of the TSHR (aa 246-260 and 277-296 on the TSHR A subunit) and aa 381-385 (on the TSHR B subunit) fold together to form a complex TSH binding pocket. Alignment of the aa sequences of these three regions in TSHRs from different species indicates that they are highly conserved.


Subject(s)
Receptors, Thyrotropin/chemistry , Receptors, Thyrotropin/metabolism , Thyrotropin/metabolism , Animals , Animals, Outbred Strains , Antibodies, Monoclonal/pharmacology , Binding Sites/immunology , Binding, Competitive/immunology , Blotting, Western , CHO Cells , Cricetinae , Epitopes , Humans , Immunization , Iodine Radioisotopes , Mice , Mice, Inbred BALB C , Protein Structure, Tertiary , Receptors, Thyrotropin/immunology , Sulfur Radioisotopes
SELECTION OF CITATIONS
SEARCH DETAIL
...