Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Cancer Res Commun ; 3(3): 371-382, 2023 03.
Article in English | MEDLINE | ID: mdl-36875158

ABSTRACT

Vitamin D deficiency is associated with an increased risk of prostate cancer mortality and is hypothesized to contribute to prostate cancer aggressiveness and disparities in African American populations. The prostate epithelium was recently shown to express megalin, an endocytic receptor that internalizes circulating globulin-bound hormones, which suggests regulation of intracellular prostate hormone levels. This contrasts with passive diffusion of hormones that is posited by the free hormone hypothesis. Here, we demonstrate that megalin imports testosterone bound to sex hormone-binding globulin into prostate cells. Prostatic loss of Lrp2 (megalin) in a mouse model resulted in reduced prostate testosterone and dihydrotestosterone levels. Megalin expression was regulated and suppressed by 25-hydroxyvitamin D (25D) in cell lines, patient-derived prostate epithelial cells, and prostate tissue explants. In patients, the relationships between hormones support this regulatory mechanism, as prostatic DHT levels are higher in African American men and are inversely correlated with serum 25D status. Megalin levels are reduced in localized prostate cancer by Gleason grade. Our findings suggest that the free hormone hypothesis should be revisited for testosterone and highlight the impact of vitamin D deficiency on prostate androgen levels, which is a known driver of prostate cancer. Thus, we revealed a mechanistic link between vitamin D and prostate cancer disparities observed in African Americans. Significance: These findings link vitamin D deficiency and the megalin protein to increased levels of prostate androgens, which may underpin the disparity in lethal prostate cancer in African America men.


Subject(s)
Androgens , Calcifediol , Low Density Lipoprotein Receptor-Related Protein-2 , Prostatic Neoplasms , Vitamin D Deficiency , Animals , Humans , Male , Mice , Black or African American , Low Density Lipoprotein Receptor-Related Protein-2/metabolism , Prostate/metabolism , Testosterone , Vitamin D/metabolism
2.
Adv Exp Med Biol ; 1210: 301-318, 2019.
Article in English | MEDLINE | ID: mdl-31900914

ABSTRACT

The RB tumor suppressor is one of the most commonly deleted/mutated genes in human cancers. In prostate cancer specifically, mutation of RB is most frequently observed in aggressive, metastatic disease. As one of the earliest tumor suppressors to be identified, the molecular functions of RB that are lost in tumor development have been studied for decades. Earlier work focused on the canonical RB pathway connecting mitogenic signaling to the cell cycle via Cyclin/CDK inactivation of RB, thereby releasing the E2F transcription factors. More in-depth analysis revealed that RB-E2F complexes regulate cellular processes beyond proliferation. Most recently, "non-canonical" roles for RB function have been expanded beyond its E2F interactions, which may play a particular role in advanced prostate cancer. For example, in mouse models of prostate cancer, loss of RB has been shown to induce lineage plasticity, which enables resistance to androgen deprivation therapy. This increased understanding of the potential downstream functions of RB in prostate cancer may lead the way to identifying therapeutic vulnerabilities in cells following RB loss.


Subject(s)
Prostatic Neoplasms/metabolism , Prostatic Neoplasms/pathology , Retinoblastoma Protein/metabolism , Animals , Disease Progression , Humans , Male
SELECTION OF CITATIONS
SEARCH DETAIL
...