Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
J Chem Phys ; 161(5)2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39087532

ABSTRACT

In this work, we present a mixed quantum-classical open quantum system dynamics method for studying rate modifications of ground-state chemical reactions in an optical cavity under vibrational strong-coupling conditions. In this approach, the cavity radiation mode is treated classically with a mean-field nuclear force averaging over the remaining degrees of freedom, both within the system and the environment, which are handled quantum mechanically within the hierarchical equations of motion framework. Using this approach, we conduct a comparative analysis by juxtaposing the mixed quantum-classical results with fully quantum-mechanical simulations. After eliminating spurious peaks that can occur when not using the rigorous definition of the rate constant, we confirm the crucial role of the quantum nature of the cavity radiation mode in reproducing the resonant peak observed in the cavity frequency-dependent rate profile. In other words, it appears necessary to explicitly consider the quantized photonic states in studying reactivity modification in vibrational polariton chemistry (at least for the model systems studied in this work), as these phenomena stem from cavity-induced reaction pathways involving resonant energy exchanges between photons and molecular vibrational transitions.

2.
J Phys Chem Lett ; 15(29): 7387-7397, 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-38995660

ABSTRACT

Quantum tunneling can have a dramatic effect on chemical reaction rates. In nonadiabatic reactions such as electron transfers or spin crossovers, nuclear tunneling effects can be even stronger than for adiabatic proton transfers. Ring-polymer instanton theory enables molecular simulations of tunneling in full dimensionality and has been shown to be far more reliable than commonly used separable approximations. First-principles instanton calculations predict significant nonadiabatic tunneling of heavy atoms even at room temperature and give excellent agreement with experimental measurements for the intersystem crossing of two nitrenes in cryogenic matrix isolation, the spin-forbidden relaxation of photoexcited thiophosgene in the gas phase, and singlet oxygen deactivation in water at ambient conditions. Finally, an outlook of further theoretical developments is discussed.

3.
J Chem Phys ; 160(22)2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38856061

ABSTRACT

In this work, we systematically investigate the mechanisms underlying the rate modification of ground-state chemical reactions in an optical cavity under vibrational strong-coupling conditions. We employ a symmetric double-well description of the molecular potential energy surface and a numerically exact open quantum system approach-the hierarchical equations of motion in twin space with a matrix product state solver. Our results predict the existence of multiple peaks in the photon frequency-dependent rate profile for a strongly anharmonic molecular system with multiple vibrational transition energies. The emergence of a new peak in the rate profile is attributed to the opening of an intramolecular reaction pathway, energetically fueled by the cavity photon bath through a resonant cavity mode. The peak intensity is determined jointly by kinetic factors. Going beyond the single-molecule limit, we examine the effects of the collective coupling of two molecules to the cavity. We find that when two identical molecules are simultaneously coupled to the same resonant cavity mode, the reaction rate is further increased. This additional increase is associated with the activation of a cavity-induced intermolecular reaction channel. Furthermore, the rate modification due to these cavity-promoted reaction pathways remains unaffected, regardless of whether the molecular dipole moments are aligned in the same or opposite direction as the light polarization.

4.
J Chem Phys ; 160(24)2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38940540

ABSTRACT

We develop a multi-state generalization of the recently proposed mapping approach to surface hopping (MASH) for the simulation of electronically nonadiabatic dynamics. This new approach extends the original MASH method to be able to treat systems with more than two electronic states. It differs from previous approaches in that it is size consistent and rigorously recovers the original two-state MASH in the appropriate limits. We demonstrate the accuracy of the method by applying it to a series of model systems for which exact benchmark results are available, and we find that the method is well suited to the simulation of photochemical relaxation processes.

5.
J Chem Phys ; 160(18)2024 May 14.
Article in English | MEDLINE | ID: mdl-38717280

ABSTRACT

Experiments have demonstrated that vibrational strong coupling between molecular vibrations and light modes can significantly change molecular properties, such as ground-state reactivity. Theoretical studies toward the origin of this exciting observation can roughly be divided into two categories, with studies based on Hamiltonians that simply couple a molecule to a cavity mode via its ground-state dipole moment on the one hand, and on the other hand ab initio calculations that self-consistently include the effect of the cavity mode on the electronic ground state within the cavity Born-Oppenheimer (CBO) approximation; these approaches are not equivalent. The CBO approach is more rigorous, but unfortunately it requires the rewriting of electronic-structure code, and its results may sometimes be hard to physically interpret. In this work, we exploit the relation between the two approaches and demonstrate on a real molecule (hydrogen fluoride) that for realistic coupling strengths, we can recover CBO energies and spectra to high accuracy using only out-of-cavity quantities from standard electronic-structure calculations. In doing so, we discover what thephysical effects underlying the CBO results are. Our methodology can aid in incorporating more possibly important features in models, play a pivotal role in demystifying CBO results, and provide a practical and efficient alternative to full CBO calculations.

6.
J Chem Phys ; 160(17)2024 May 07.
Article in English | MEDLINE | ID: mdl-38748021

ABSTRACT

In response to a community prediction challenge, we simulate the nonadiabatic dynamics of cyclobutanone using the mapping approach to surface hopping (MASH). We consider the first 500 fs of relaxation following photoexcitation to the S2 state and predict the corresponding time-resolved electron-diffraction signal that will be measured by the planned experiment. 397 ab initio trajectories were obtained on the fly with state-averaged complete active space self-consistent field using a (12,11) active space. To obtain an estimate of the potential systematic error, 198 of the trajectories were calculated using an aug-cc-pVDZ basis set and 199 with a 6-31+G* basis set. MASH is a recently proposed independent trajectory method for simulating nonadiabatic dynamics, originally derived for two-state problems. As there are three relevant electronic states in this system, we used a newly developed multi-state generalization of MASH for the simulation: the uncoupled spheres multi-state MASH method (unSMASH). This study, therefore, serves both as an investigation of the photodissociation dynamics of cyclobutanone, and also as a demonstration of the applicability of unSMASH to ab initio simulations. In line with previous experimental studies, we observe that the simulated dynamics is dominated by three sets of dissociation products, C3H6 + CO, C2H4 + C2H2O, and C2H4 + CH2 + CO, and we interpret our predicted electron-diffraction signal in terms of the key features of the associated dissociation pathways.

7.
J Chem Theory Comput ; 20(9): 3766-3778, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38708859

ABSTRACT

Simulation of surface processes is a key part of computational chemistry that offers atomic-scale insights into mechanisms of heterogeneous catalysis, diffusion dynamics, and quantum tunneling phenomena. The most common theoretical approaches involve optimization of reaction pathways, including semiclassical tunneling pathways (called instantons). The computational effort can be demanding, especially for instanton optimizations with an ab initio electronic structure. Recently, machine learning has been applied to accelerate reaction-pathway optimization, showing great potential for a wide range of applications. However, previous methods still suffer from numerical and efficiency issues and were not designed for condensed-phase reactions. We propose an improved framework based on Gaussian process regression for general transformed coordinates, which has improved efficiency and numerical stability, and we propose a descriptor that combines internal and Cartesian coordinates suitable for modeling surface processes. We demonstrate with 11 instanton optimizations in three representative systems that the improved approach makes ab initio instanton optimization significantly cheaper, such that it becomes not much more expensive than a classical transition-state theory rate calculation.

8.
Nat Commun ; 15(1): 4335, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38773078

ABSTRACT

The reactive singlet state of oxygen (O2) can decay to the triplet ground state nonradiatively in the presence of a solvent. There is a controversy about whether tunnelling is involved in this nonadiabatic spin-crossover process. Semiclassical instanton theory provides a reliable and practical computational method for elucidating the reaction mechanism and can account for nuclear quantum effects such as zero-point energy and multidimensional tunnelling. However, the previously developed instanton theory is not directly applicable to this system because of a branch-point singularity which appears in the flux correlation function. Here we derive a new instanton theory for cases dominated by the singularity, leading to a new picture of tunnelling in nonadiabatic processes. Together with multireference electronic-structure theory, this provides a rigorous framework based on first principles that we apply to calculate the decay rate of singlet oxygen in water. The results indicate a new reaction mechanism that is 27 orders of magnitude faster at room temperature than the classical process through the minimum-energy crossing point. We find significant heavy-atom tunnelling contributions as well as a large temperature-dependent H2O/D2O kinetic isotope effect of approximately 20, in excellent agreement with experiment.

9.
Chimia (Aarau) ; 78(4): 231-233, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38676615

ABSTRACT

Electronic excitation is usually accomplished using light (photoexcitation) and is a key step in a vast number of important physical and biological processes. However, in instances where photoexcitation is not possible, a photosensitizer can excite the target molecule in a process called photosensitization. Unfortunately, full details of its mechanism are still unknown. This perspective gives an overview of the current understanding of photosensitization and describes how instanton theory can be used to fill the gaps, especially with regard tothe importance of quantum tunnelling effects.

10.
Diabetes Obes Metab ; 26(6): 2158-2166, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38433703

ABSTRACT

AIM: Type 1 diabetes results from autoimmune events influenced by environmental variables, including changes in diet. This study investigated how feeding refined versus unrefined (aka 'chow') diets affects the onset and progression of hyperglycaemia in non-obese diabetic (NOD) mice. METHODS: Female NOD mice were fed either unrefined diets or matched refined low- and high-fat diets. The onset of hyperglycaemia, glucose tolerance, food intake, energy expenditure, circulating insulin, liver gene expression and microbiome changes were measured for each dietary group. RESULTS: NOD mice consuming unrefined (chow) diets developed hyperglycaemia at similar frequencies. By contrast, mice consuming the defined high-fat diet had an accelerated onset of hyperglycaemia compared to the matched low-fat diet. There was no change in food intake, energy expenditure, or physical activity within each respective dietary group. Microbiome changes were driven by diet type, with chow diets clustering similarly, while refined low- and high-fat bacterial diversity also grouped closely. In the defined dietary cohort, liver gene expression changes in high-fat-fed mice were consistent with a greater frequency of hyperglycaemia and impaired glucose tolerance. CONCLUSION: Glucose intolerance is associated with an enhanced frequency of hyperglycaemia in female NOD mice fed a defined high-fat diet. Using an appropriate matched control diet is an essential experimental variable when studying changes in microbiome composition and diet as a modifier of disease risk.


Subject(s)
Diabetes Mellitus, Type 1 , Diet, High-Fat , Hyperglycemia , Mice, Inbred NOD , Animals , Diet, High-Fat/adverse effects , Female , Diabetes Mellitus, Type 1/metabolism , Diabetes Mellitus, Type 1/microbiology , Mice , Hyperglycemia/etiology , Glucose Intolerance/etiology , Energy Metabolism , Liver/metabolism , Diet, Fat-Restricted , Insulin/metabolism , Insulin/blood , Blood Glucose/metabolism
11.
J Phys Chem Lett ; 15(3): 707-716, 2024 Jan 25.
Article in English | MEDLINE | ID: mdl-38214476

ABSTRACT

It is well-known that fewest-switches surface hopping (FSSH) fails to correctly capture the quadratic scaling of rate constants with diabatic coupling in the weak-coupling limit, as expected from Fermi's golden rule and Marcus theory. To address this deficiency, the most widely used approach is to introduce a "decoherence correction", which removes the inconsistency between the wave function coefficients and the active state. Here we investigate the behavior of a new nonadiabatic trajectory method, called the mapping approach to surface hopping (MASH), on systems that exhibit an incoherent rate behavior. Unlike FSSH, MASH hops between active surfaces deterministically and can never have an inconsistency between the wave function coefficients and the active state. We show that MASH not only can describe rates for intermediate and strong diabatic coupling but also can accurately reproduce the results of Marcus theory in the golden-rule limit, without the need for a decoherence correction. MASH is therefore a significant improvement over FSSH in the simulation of nonadiabatic reactions.

SELECTION OF CITATIONS
SEARCH DETAIL