Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 105
Filter
Add more filters










Publication year range
1.
Adv Mater ; : e2401172, 2024 Mar 14.
Article in English | MEDLINE | ID: mdl-38483347

ABSTRACT

Photosynthetic microalgae produce valuable metabolites and are a source of sustainable food that supports life without compromising arable land. However, the light self-shading, excessive water supply, and insufficient space utilization in microalgae farming have limited its potential in the inland areas most in need of regenerative food solutions. Herein, this work develops a 3D polysaccharide-based hydrogel scaffold for vertically farming microalgae without needing liquid media. This liquid-free strategy is compatible with diverse microalgal species and enables the design of living microalgal frameworks with customizable architectures that enhance light and water utilization. This approach significantly increases microalgae yield per unit water consumption, with an 8.8-fold increase compared to traditional methods. Furthermore, the dehydrated hydrogels demonstrate a reduced size and weight (≈70% reduction), but readily recover their vitality upon rehydration. Importantly, valuable natural products can be produced in this system including proteins, carbohydrates, lipids, and carotenoids. This study streamlines microalgae regenerative farming for low-carbon biomanufacturing by minimizing light self-shading, relieving water supply, and reducing physical footprints, and democratizing access to efficient aquatic food production.

2.
Angew Chem Int Ed Engl ; 63(12): e202314501, 2024 Mar 18.
Article in English | MEDLINE | ID: mdl-38302821

ABSTRACT

Due to the presence of natural neoantigens, autologous tumor cells hold great promise as personalized therapeutic vaccines. Yet autologous tumor cell vaccines require multi-step production that frequently leads to the loss of immunoreactive antigens, causing insufficient immune activation and significantly hampering their clinical applications. Herein, we introduce a novel whole-cell cancer vaccine by cloaking cancer cells with lipopolysaccharide-decorated manganese(II)-phenolic networks (MnTA nanocloaks) to evoke tumor-specific immune response for highly efficacious synergistic cancer immunotherapy. The natural polyphenols coordinate with Mn2+ and immediately adhere to the surface of individual cancer cells, thereby forming a nanocloak and encapsulating tumor neoantigens. Subsequent decoration with lipopolysaccharide induces internalization by dendritic cells, where Mn2+ ions are released in the cytosol, further facilitating the activation of the stimulator of the interferon genes (STING) pathway. Highly effective tumor suppression was observed by combining the nanocloaked cancer cell treatment with anti-programmed cell death ligand 1 (anti-PD-L1) antibodies-mediated immune checkpoint blockade therapy. Our work demonstrates a universal yet simple strategy to engineer a cell-based nanobiohybrid system for enhanced cancer immunotherapy.


Subject(s)
Neoplasms , Vaccines , Humans , Immunotherapy , Lipopolysaccharides , Neoplasms/therapy , Tumor Microenvironment , Cancer Vaccines
3.
Adv Sci (Weinh) ; 11(3): e2308026, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38014599

ABSTRACT

Synthetic cell exoskeletons created from abiotic materials have attracted interest in materials science and biotechnology, as they can regulate cell behavior and create new functionalities. Here, a facile strategy is reported to mimic microalgal sporulation with on-demand germination and locomotion via responsive metal-phenolic networks (MPNs). Specifically, MPNs with tunable thickness and composition are deposited on the surface of microalgae cells via one-step coordination, without any loss of cell viability or intrinsic cell photosynthetic properties. The MPN coating keeps the cells in a dormant state, but can be disassembled on-demand in response to environmental pH or chemical stimulus, thereby reviving the microalgae within 1 min. Moreover, the artificial sporulation of microalgae resulted in resistance to environmental stresses (e.g., metal ions and antibiotics) akin to the function of natural sporulation. This strategy can regulate the life cycle of complex cells, providing a synthetic strategy for designing hybrid microorganisms.


Subject(s)
Microalgae , Microalgae/metabolism , Phenols/metabolism , Metals , Cell Survival
4.
J Am Chem Soc ; 145(44): 24108-24115, 2023 11 08.
Article in English | MEDLINE | ID: mdl-37788442

ABSTRACT

Protocells have garnered considerable attention from cell biologists, materials scientists, and synthetic biologists. Phase-separating coacervate microdroplets have emerged as a promising cytomimetic model because they can internalize and concentrate components from dilute surrounding environments. However, the membrane-free nature of such coacervates leads to coalescence into a bulk phase, a phenomenon that is not representative of the cells they are designed to mimic. Herein, we develop a membranized peptide coacervate (PC) with oppositely charged oligopeptides as the molecularly crowded cytosol and a metal-phenolic network (MPN) coating as the membrane. The hybrid protocell efficiently internalizes various bioactive macromolecules (e.g., bovine serum albumin and immunoglobulin G) (>90%) while also resisting radicals due to the semipermeable cytoprotective membrane. Notably, the resultant PC@MPNs are capable of anabolic cascade reactions and remain in discrete protocellular populations without coalescence. Finally, we demonstrate that the MPN protocell membrane can be postfunctionalized with various functional molecules (e.g., folic acid and fluorescence dye) to more closely resemble actual cells with complex membranes, such as recognition molecules, which allows for drug delivery. This membrane-bound cytosolic protocell structure paves the way for innovative synthetic cells with structural and functional complexity.


Subject(s)
Artificial Cells , Artificial Cells/chemistry , Peptides , Serum Albumin, Bovine/chemistry , Macromolecular Substances
5.
RSC Adv ; 13(43): 30539-30547, 2023 Oct 11.
Article in English | MEDLINE | ID: mdl-37860174

ABSTRACT

Calcium carbonate (CaCO3) is a naturally occurring mineral that occurs in biology and is used industrially. Due to its benign nature, CaCO3 microparticles have found use in the food and medical fields, where the specific size of the microparticles determine their functionality and potential applications. We demonstrate that phenolic polymers with different numbers of hydroxy groups can be used to control the diameter of CaCO3 microparticles in a range of 2-9 µm, and obtained particles were relatively uniform. The largest particles (∼9 µm in diameter) were obtained using poly(2,3,4,5-tetrahydroxystyrene) (P4HS), which showed the highest water solubility among the tested phenolic polymers. The polymer concentration and stirring speed influenced the size of microparticles, where the size of the obtained particles became smaller as the concentrations of phenolic polymers increased and as the stirring speed increased, both likely due to promoting the formation of a large number of individual crystal seeds by shielding seed-seed fusion and increasing the chances for precursor contact, respectively. The preparation time and temperature had a great influence on the morphology of the CaCO3 particles, where vaterite transforms into calcite over time. Specifically, aragonite crystals were observed at preparation temperature of 80 °C and vaterite particles with rough surfaces were obtained at 40 °C. Molecular weight and scale of reaction were also factors which affect the size and morphologies of CaCO3 particles. This research represents a facile method for producing relatively monodisperse CaCO3 microparticles with diameters that have previously proven difficult to access.

6.
J Control Release ; 360: 433-446, 2023 08.
Article in English | MEDLINE | ID: mdl-37422124

ABSTRACT

Drug-dependent design of hydrogels is currently required for engineering the controlled release of therapeutics, which is a major contributor to the technical challenges relating to the clinical translation of hydrogel-drug systems. Herein, by integrating supramolecular phenolic-based nanofillers (SPFs) into hydrogel microstructures we developed a facile strategy to endow a range of clinically relevant hydrogels with controlled release properties for diverse therapeutic agents. The assembly of multiscale SPF aggregates leads to tunable mesh size and multiple dynamic interactions between SPF aggregates and drugs, which relaxes the available choices of drugs and hydrogels. This simple approach allowed for the controlled release of 12 representative drugs evaluated with 8 commonly used hydrogels. Moreover, the anesthetic drug lidocaine was loaded into SPF-integrated alginate hydrogel and demonstrated sustained release for 14 days in vivo, validating the potential for long-term anesthesia in patients.


Subject(s)
Hydrogels , Lidocaine , Humans , Hydrogels/chemistry , Delayed-Action Preparations , Drug Delivery Systems
7.
Environ Sci Technol ; 57(34): 12911-12921, 2023 08 29.
Article in English | MEDLINE | ID: mdl-37459229

ABSTRACT

SO2 removal is critical to flue gas purification. However, based on performance and cost, materials under development are hardly adequate substitutes for active carbon-based materials. Here, we engineered biomass-derived nanostructured carbon nanofibers integrated with highly dispersed bimetallic Ti/CoOx nanoparticles through the thermal transition of metal-phenolic functionalized industrial leather wastes for synergistic SO2 adsorption and in situ catalytic conversion. The generation of surface-SO32- and peroxide species (O22-) by Ti/CoOx achieved catalytic conversion of adsorbed SO2 into value-added liquid H2SO4, which can be discharged from porous nanofibers. This approach can also avoid the accumulation of the adsorbed SO2, thereby achieving high desulfurization activity and a long operating life over 6000 min, preceding current state-of-the-art active carbon-based desulfurization materials. Combined with the techno-economic and carbon footprint analysis from 36 areas in China, we demonstrated an economically viable and scalable solution for real-world SO2 removal on the industrial scale.


Subject(s)
Charcoal , Sulfur Dioxide , Adsorption , Biomass , Carbon
8.
Angew Chem Int Ed Engl ; 62(29): e202303463, 2023 Jul 17.
Article in English | MEDLINE | ID: mdl-37208956

ABSTRACT

Colloidal supraparticles integrated with multicomponent primary particles come with emerging or synergetic functionalities. However, achieving the functional customization of supraparticles remains a great challenge because of the limited options of building blocks with tailorability and functional extensibility. Herein, we developed a universal approach to construct customizable supraparticles with desired properties from molecular building blocks obtained by the covalent conjugation of catechol groups with a series of orthogonal functional groups. These catechol-terminated molecular building blocks can assemble into primary particles driven by various intermolecular interactions (i.e. metal-organic coordination, host-guest, and hydrophobic interactions), and then further assemble into supraparticles governed by catechol-mediated interfacial interactions. Our strategy enables the formation of supraparticles with diverse functionalities, such as dual-pH responsiveness, light-controllable permeability, and non-invasive fluorescence labeling of living cells. The ease with which these supraparticles can be fabricated, and the ability to tailor their chemical and physical properties through the choice of metals and orthogonal functional groups used, should enable a variety of applications.

9.
Nat Rev Chem ; 7(4): 273-286, 2023 Apr.
Article in English | MEDLINE | ID: mdl-37117419

ABSTRACT

Coordination polymers (CPs) and their subset, metal-organic frameworks (MOFs), can have porous structures and hybrid physicochemical properties that are useful for diverse applications. Although crystalline CPs and MOFs have received the most attention to date, their amorphous states are of growing interest as they can be directly synthesized under mild conditions. Directly synthesized amorphous CPs (aCPs) can be constructed from a wider range of metals and ligands than their crystalline and crystal-derived counterparts and demonstrate numerous unique material properties, such as higher mechanical robustness, increased stability and greater processability. This Review examines methods for the direct synthesis of aCPs and amorphous MOFs, as well as their properties and characterization routes, and offers a perspective on the opportunities for the widespread adoption of directly synthesized aCPs.

10.
Angew Chem Int Ed Engl ; 62(14): e202218021, 2023 03 27.
Article in English | MEDLINE | ID: mdl-36732289

ABSTRACT

Nanostructured materials with tunable structures and functionality are of interest in diverse areas. Herein, metal ions are coordinated with quinones through metal-acetylacetone coordination bonds to generate a class of structurally tunable, universally adhesive, hydrophilic, and pH-degradable materials. A library of metal-quinone networks (MQNs) is produced from five model quinone ligands paired with nine metal ions, leading to the assembly of particles, tubes, capsules, and films. Importantly, MQNs show bidirectional pH-responsive disassembly in acidic and alkaline solutions, where the quinone ligands mediate the disassembly kinetics, enabling temporal and spatial control over the release of multiple components using multilayered MQNs. Leveraging this tunable release and the inherent medicinal properties of quinones, MQN prodrugs with a high drug loading (>89 wt %) are engineered using doxorubicin for anti-cancer therapy and shikonin for the inhibition of the main protease in the SARS-CoV-2 virus.


Subject(s)
COVID-19 , Humans , SARS-CoV-2 , Metals/chemistry , Quinones/pharmacology
11.
Adv Sci (Weinh) ; 10(9): e2206546, 2023 03.
Article in English | MEDLINE | ID: mdl-36698301

ABSTRACT

Antibody-nanoparticle conjugates are promising candidates for precision medicine. However, developing a controllable method for conjugating antibodies to nanoparticles without compromising the antibody activity represents a critical challenge. Here, a facile and generalizable film-coating method is presented using zeolitic imidazole framework-8 (ZIF-8) to immobilize antibodies on various nanoparticles in a favorable orientation for enhanced cell targeting. Different model and therapeutic antibodies (e.g., Herceptin) are assembled on nanoparticles via a biomineralized film-coating method and exhibited high antibody loading and targeting efficiencies. Importantly, the antibodies selectively bind to ZIF-8 via their Fc regions, which favorably exposes the functional Fab regions to the biological target, thus improving the cell targeting ability of antibody-coated nanoparticles. In combination, molecular dynamics simulations and experimental studies on antibody immobilization, orientation efficiency, and biofunctionality collectively demonstrate that this versatile site-specific antibody conjugation method provides effective control over antibody orientation and leads to improved cell targeting for a variety of nanoparticles.


Subject(s)
Metal Nanoparticles , Antibody Specificity , Drug Delivery Systems , Metal-Organic Frameworks/chemistry , Metal Nanoparticles/chemistry
12.
Nanoscale ; 14(39): 14466-14470, 2022 Oct 13.
Article in English | MEDLINE | ID: mdl-36149411

ABSTRACT

Tannic acid (TA) is a structurally undefined natural dendritic polyphenol. Here, we introduce a series of TA-inspired polymers with different arm lengths, Mn, and phenolic groups that can be used to engineer metal-phenolic network (MPN) capsules with different properties including controlled permeability, high biocompatibility, and fluorescence.

13.
J Am Chem Soc ; 144(27): 12510-12519, 2022 07 13.
Article in English | MEDLINE | ID: mdl-35775928

ABSTRACT

Supramolecular assembly affords the development of a wide range of polypeptide-based biomaterials for drug delivery and nanomedicine. However, there remains a need to develop a platform for the rapid synthesis and study of diverse polypeptide-based materials without the need for employing complex chemistries. Herein, we develop a versatile strategy for creating polypeptide-based materials using polyphenols that display multiple synergistic cross-linking interactions with different polypeptide side groups. We evaluated the diverse interactions operating within these polypeptide-polyphenol networks via binding affinity, thermodynamics, and molecular docking studies and found that positively charged polypeptides (Ka of ∼2 × 104 M-1) and polyproline (Ka of ∼2 × 106 M-1) exhibited stronger interactions with polyphenols than other amino acids (Ka of ∼2 × 103 M-1). Free-standing particles (capsules) were obtained from different homopolypeptides using a template-mediated strategy. The properties of the capsules varied with the homopolypeptide used, for example, positively charged polypeptides produced thicker shell walls (120 nm) with reduced permeability and involved multiple interactions (i.e., electrostatic and hydrogen), whereas uncharged polypeptides generated thinner (10 nm) and more permeable shell walls due to the dominant hydrophobic interactions. Polyarginine imparted cell penetration and endosomal escape properties to the polyarginine-tannic acid capsules, enabling enhanced delivery of the drug doxorubicin (2.5 times higher intracellular fluorescence after 24 h) and a corresponding higher cell death in vitro when compared with polyproline-tannic acid capsules. The ability to readily complex polyphenols with different types of polypeptides highlights that a wide range of functional materials can be generated for various applications.


Subject(s)
Peptides , Polyphenols , Capsules/chemistry , Drug Delivery Systems , Molecular Docking Simulation , Peptides/chemistry , Tannins/chemistry
14.
Carbohydr Polym ; 292: 119681, 2022 Sep 15.
Article in English | MEDLINE | ID: mdl-35725211

ABSTRACT

One of the key steps towards a broader implementation of renewable materials is the development of biodegradable adhesives that can be attained at scale and utilized safely. Recently, cellulose nanocrystals (CNCs) were demonstrated to have remarkable adhesive properties. Herein, we study three classes of naturally synthesized biopolymers as adhesives, namely nanocelluloses (CNFs), cellulose derivatives, and proteins by themselves and when used as additives with CNCs. Among the samples evaluated, the adhesion strength was the highest for bovine serum albumin and hydroxypropyl cellulose (beyond 10 MPa). These were followed by carboxymethylcellulose and CNCs (ca. 5 MPa) and mechanically fibrillated CNFs (ca. 2 MPa), and finally by tempo-oxidized CNFs (0.2 MPa) and lysozyme (1.5 MPa). Remarkably, we find that the anisotropy of adhesion (in plane vs out of plane) falls within a narrow range across the bio-based adhesives studied. Collectively, this study benchmarks bio-based non-covalent adhesives aiming towards their improvement and implementation.


Subject(s)
Benchmarking , Nanoparticles , Serum Albumin, Bovine/chemistry , Adhesives , Cellulose/chemistry , Nanoparticles/chemistry
15.
Angew Chem Int Ed Engl ; 61(34): e202208037, 2022 08 22.
Article in English | MEDLINE | ID: mdl-35726006

ABSTRACT

Coordination states of metal-organic materials are known to dictate their physicochemical properties and applications in various fields. However, understanding and controlling coordination sites in metal-organic systems is challenging. Herein, we report the synthesis of site-selective coordinated metal-phenolic networks (MPNs) using flavonoids as coordination modulators. The site-selective coordination was systematically investigated experimentally and computationally using ligands with one, two, and multiple different coordination sites. Tuning the multimodal Fe coordination with catechol, carbonyl, and hydroxyl groups within the MPNs enabled the facile engineering of diverse physicochemical properties including size, selective permeability (20-2000 kDa), and pH-dependent degradability. This study expands our understanding of metal-phenolic chemistry and provides new routes for the rational design of structurally tailorable coordination-based materials.


Subject(s)
Metals , Phenols , Ligands , Metals/chemistry , Phenols/chemistry
16.
Langmuir ; 38(27): 8324-8333, 2022 07 12.
Article in English | MEDLINE | ID: mdl-35758845

ABSTRACT

Bioadsorption is a promising technology to sequester heavy metal ions from water, and brown seaweed has been identified as one of the most appropriate adsorbents as it is abundant, low cost, and efficient at removing various metal ion contaminations. The ability to remove heavy metals from water arises from the high concentration of polysaccharides and phlorotannins in brown seaweed; however, remediation can be hampered by the salinity, location, and coexistence of pollutants in the contaminated water. Maintaining the adsorbent properties of brown seaweed while avoiding the fragility of living organisms could allow for the development of better adsorbents. Herein, we demonstrate that polymerized phlorotannin particles, synthesized from phlorotannins extracted from a species of brown seaweed (Carpophyllum flexuosum), were able to remove 460 mg of Pb2+ from water per gram of adsorbent. Scanning electron microscopy (SEM), attenuated total reflectance Fourier-transform infrared spectroscopy (ATR-FTIR), and thermogravimetric analysis (TGA) were used to characterize the polymerization process and the polymerized phlorotannin particles. Importantly, there was no direct correlation between the Pb2+ removal capacity and the phlorotannin content of various algal derivatives of three species of brown seaweed, C. flexuosum, Carpophyllum plumosum, and Ecklonia radiata, as all three had similar adsorption capacities despite differences in phlorotannin content. This work shows that naturally abundant, "green" materials can be used to help remediate the environment.


Subject(s)
Metals, Heavy , Seaweed , Water Pollutants, Chemical , Adsorption , Kinetics , Lead , Polymerization , Seaweed/chemistry , Water , Water Pollutants, Chemical/chemistry
17.
Chem Soc Rev ; 51(11): 4287-4336, 2022 Jun 06.
Article in English | MEDLINE | ID: mdl-35471996

ABSTRACT

Advanced treatments based on immune system manipulation, gene transcription and regulation, specific organ and cell targeting, and/or photon energy conversion have emerged as promising therapeutic strategies against a range of challenging diseases. Naturally derived macromolecules (e.g., proteins, lipids, polysaccharides, and polyphenols) have increasingly found use as fundamental building blocks for nanostructured particles as their advantageous properties, including biocompatibility, biodegradability, inherent bioactivity, and diverse chemical properties make them suitable for advanced therapeutic applications. This review provides a timely and comprehensive summary of the use of a broad range of natural building blocks in the rapidly developing field of advanced therapeutics with insights specific to nanostructured particles. We focus on an up-to-date overview of the assembly of nanostructured particles using natural building blocks and summarize their key scientific and preclinical milestones for advanced therapies, including adoptive cell therapy, immunotherapy, gene therapy, active targeted drug delivery, photoacoustic therapy and imaging, photothermal therapy, and combinational therapy. A cross-comparison of the advantages and disadvantages of different natural building blocks are highlighted to elucidate the key design principles for such bio-derived nanoparticles toward improving their performance and adoption. Current challenges and future research directions are also discussed, which will accelerate our understanding of designing, engineering, and applying nanostructured particles for advanced therapies.


Subject(s)
Nanoparticles , Nanostructures , Drug Delivery Systems , Genetic Therapy , Macromolecular Substances , Nanoparticles/chemistry , Nanostructures/therapeutic use
18.
Bioact Mater ; 16: 95-106, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35386317

ABSTRACT

New materials for combating bacteria-caused infection and promoting the formation of microvascular networks during wound healing are of vital importance. Although antibiotics can be used to prevent infection, treatments that can disinfect and accelerate wound healing are scarce. Herein, we engineer a coating that is both highly compatible with current wound dressing substrates and capable of simultaneously disinfecting and revascularizing wounds using a metal-phenolic nanoplatform containing an alloyed nanostructured architecture (Ag@Cu-MPNNC). The alloyed nanostructure is formed by the spontaneous co-reduction and catalytic disproportionation reaction of multiple metal ions on a foundation metal-phenolic supramolecular layer. This synergistic presence of metals greatly improves the antibacterial activity against both Gram-negative and Gram-positive pathogenic bacteria, while demonstrating negligible cytotoxicity to normal tissue. In infected rat models, the Ag@Cu-MPNNC could kill bacteria efficiently, promoting revascularization and accelerate wound closure with no adverse side effects in infected in vivo models. In other words, this material acts as a combination therapy by inhibiting bacterial invasion and modulating bio-nano interactions in the wound.

19.
Nat Commun ; 13(1): 1892, 2022 04 13.
Article in English | MEDLINE | ID: mdl-35418119

ABSTRACT

Robust underwater adhesion is challenging because a hydration layer impedes the interaction between substrates and adhesives. Phenolic adhesives inspired by marine creatures such as mussels were extensively studied, but these adhesives have not reached the adhesion strength and substrate diversity of Man-made dry adhesives. Here, we report a class of ultrastrong underwater adhesives with molecular phenolic designs extending beyond what nature has produced. These non-canonical phenolic polymers show versatile adhesion on various materials, with adhesion strengths exceeding 10 MPa on metal. Incorporating even just a small amount (<10%) of non-canonical phenolic groups into a polymer is sufficient for dramatically enhancing underwater adhesion, suggesting that this new class of phenolic materials will be incorporated into various industrial polymer systems in the future.


Subject(s)
Adhesives , Bivalvia , Adhesives/chemistry , Animals , Humans , Physical Phenomena , Polymers/chemistry
20.
Sci Rep ; 12(1): 2071, 2022 02 08.
Article in English | MEDLINE | ID: mdl-35136104

ABSTRACT

The development of antimicrobial fabrics and textiles that can sustainably inhibit a broad spectrum of microbes is crucial for protecting against pathogens in various environments. However, engineering antimicrobial textiles is challenging due to issues with discoloration and inhibited breathability, the use of harmful or harsh reagents and synthesis conditions, and complex and/or time-consuming processing. Herein, we develop a facile and rapid approach to deposit antimicrobial coatings using universally adherent plant polyphenols and antimicrobial silver ions. Importantly, the coatings are colorless, thin (< 10 nm), rapidly assembled (< 20 min), and can be deposited via immersion or spraying. We demonstrate that these metal-phenolic coatings on textiles can inhibit lipid-enveloped viruses over one thousand times more efficiently than coatings composed of other metal ions, while maintaining their efficacy even after 5 washes. Moreover, the coatings also inhibit Gram positive and negative bacteria, and fungi, and can prevent odors on clothes for at least 10 washes. Collectively, the ease of synthesis, use of simple and safe precursors, and amenability to at-home and industrial application suggests that the coatings will find practical application in various settings.

SELECTION OF CITATIONS
SEARCH DETAIL
...