Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters











Database
Language
Publication year range
1.
Phys Med Biol ; 56(6): 1803-36, 2011 Mar 21.
Article in English | MEDLINE | ID: mdl-21358019

ABSTRACT

When the human body is exposed to ionizing radiation, among the soft tissues at risk are the active marrow (AM) and the bone endosteum (BE) located in tiny, irregular cavities of trabecular bone. Determination of absorbed fractions (AFs) of energy or absorbed dose in the AM and the BE represent one of the major challenges of dosimetry. Recently, at the Department of Nuclear Energy at the Federal University of Pernambuco, a skeletal dosimetry method based on µCT images of trabecular bone introduced into the spongiosa voxels of human phantoms has been developed and applied mainly to external exposure to photons. This study uses the same method to calculate AFs of energy and S-values (absorbed dose per unit activity) for electron-emitting radionuclides known to concentrate in skeletal tissues. The modelling of the skeletal tissue regions follows ICRP110, which defines the BE as a 50 µm thick sub-region of marrow next to the bone surfaces. The paper presents mono-energetic AFs for the AM and the BE for eight different skeletal regions for electron source energies between 1 keV and 10 MeV. The S-values are given for the beta emitters (14)C, (59)Fe, (131)I, (89)Sr, (32)P and (90)Y. Comparisons with results from other investigations showed good agreement provided that differences between methodologies and trabecular bone volume fractions were properly taken into account. Additionally, a comparison was made between specific AFs of energy in the BE calculated for the actual 50 µm endosteum and the previously recommended 10 µm endosteum. The increase in endosteum thickness leads to a decrease of the endosteum absorbed dose by up to 3.7 fold when bone is the source region, while absorbed dose increases by ∼20% when the beta emitters are in marrow.


Subject(s)
Bone Marrow/diagnostic imaging , Bone and Bones/diagnostic imaging , Tomography, X-Ray Computed/methods , Adult , Algorithms , Bone Marrow/pathology , Bone and Bones/pathology , Electrons , Humans , Phantoms, Imaging , Radiation Dosage
SELECTION OF CITATIONS
SEARCH DETAIL