Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Nature ; 624(7991): 415-424, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38092908

ABSTRACT

The basic plan of the retina is conserved across vertebrates, yet species differ profoundly in their visual needs1. Retinal cell types may have evolved to accommodate these varied needs, but this has not been systematically studied. Here we generated and integrated single-cell transcriptomic atlases of the retina from 17 species: humans, two non-human primates, four rodents, three ungulates, opossum, ferret, tree shrew, a bird, a reptile, a teleost fish and a lamprey. We found high molecular conservation of the six retinal cell classes (photoreceptors, horizontal cells, bipolar cells, amacrine cells, retinal ganglion cells (RGCs) and Müller glia), with transcriptomic variation across species related to evolutionary distance. Major subclasses were also conserved, whereas variation among cell types within classes or subclasses was more pronounced. However, an integrative analysis revealed that numerous cell types are shared across species, based on conserved gene expression programmes that are likely to trace back to an early ancestral vertebrate. The degree of variation among cell types increased from the outer retina (photoreceptors) to the inner retina (RGCs), suggesting that evolution acts preferentially to shape the retinal output. Finally, we identified rodent orthologues of midget RGCs, which comprise more than 80% of RGCs in the human retina, subserve high-acuity vision, and were previously believed to be restricted to primates2. By contrast, the mouse orthologues have large receptive fields and comprise around 2% of mouse RGCs. Projections of both primate and mouse orthologous types are overrepresented in the thalamus, which supplies the primary visual cortex. We suggest that midget RGCs are not primate innovations, but are descendants of evolutionarily ancient types that decreased in size and increased in number as primates evolved, thereby facilitating high visual acuity and increased cortical processing of visual information.


Subject(s)
Biological Evolution , Neurons , Retina , Vertebrates , Vision, Ocular , Animals , Humans , Neurons/classification , Neurons/cytology , Neurons/physiology , Retina/cytology , Retina/physiology , Retinal Ganglion Cells/classification , Single-Cell Gene Expression Analysis , Vertebrates/physiology , Vision, Ocular/physiology , Species Specificity , Amacrine Cells/classification , Photoreceptor Cells/classification , Ependymoglial Cells/classification , Retinal Bipolar Cells/classification , Visual Perception
2.
Curr Biol ; 33(15): 3289-3298.e6, 2023 08 07.
Article in English | MEDLINE | ID: mdl-37480852

ABSTRACT

Patterns of diel activity-how animals allocate their activity throughout the 24-h daily cycle-play key roles in shaping the internal physiology of an animal and its relationship with the external environment.1,2,3,4,5 Although shifts in diel activity patterns have occurred numerous times over the course of vertebrate evolution,6 the genomic correlates of such transitions remain unknown. Here, we use the African striped mouse (Rhabdomys pumilio), a species that transitioned from the ancestrally nocturnal diel niche of its close relatives to a diurnal one,7,8,9,10,11 to define patterns of naturally occurring molecular variation in diel niche traits. First, to facilitate genomic analyses, we generate a chromosome-level genome assembly of the striped mouse. Next, using transcriptomics, we show that the switch to daytime activity in this species is associated with a realignment of daily rhythms in peripheral tissues with respect to the light:dark cycle and the central circadian clock. To uncover selection pressures associated with this temporal niche shift, we perform comparative genomic analyses with closely related rodent species and find evidence of relaxation of purifying selection on striped mouse genes in the rod phototransduction pathway. In agreement with this, electroretinogram measurements demonstrate that striped mice have functional differences in dim-light visual responses compared with nocturnal rodents. Taken together, our results show that striped mice have undergone a drastic change in circadian organization and provide evidence that the visual system has been a major target of selection as this species transitioned to a novel temporal niche.


Subject(s)
Circadian Clocks , Circadian Rhythm , Mice , Animals , Circadian Rhythm/genetics , Rodentia/genetics , Photoperiod , Genomics
3.
bioRxiv ; 2023 Apr 08.
Article in English | MEDLINE | ID: mdl-37066415

ABSTRACT

The basic plan of the retina is conserved across vertebrates, yet species differ profoundly in their visual needs (Baden et al., 2020). One might expect that retinal cell types evolved to accommodate these varied needs, but this has not been systematically studied. Here, we generated and integrated single-cell transcriptomic atlases of the retina from 17 species: humans, two non-human primates, four rodents, three ungulates, opossum, ferret, tree shrew, a teleost fish, a bird, a reptile and a lamprey. Molecular conservation of the six retinal cell classes (photoreceptors, horizontal cells, bipolar cells, amacrine cells, retinal ganglion cells [RGCs] and Muller glia) is striking, with transcriptomic differences across species correlated with evolutionary distance. Major subclasses are also conserved, whereas variation among types within classes or subclasses is more pronounced. However, an integrative analysis revealed that numerous types are shared across species based on conserved gene expression programs that likely trace back to the common ancestor of jawed vertebrates. The degree of variation among types increases from the outer retina (photoreceptors) to the inner retina (RGCs), suggesting that evolution acts preferentially to shape the retinal output. Finally, we identified mammalian orthologs of midget RGCs, which comprise >80% of RGCs in the human retina, subserve high-acuity vision, and were believed to be primate-specific (Berson, 2008); in contrast, the mouse orthologs comprise <2% of mouse RGCs. Projections both primate and mouse orthologous types are overrepresented in the thalamus, which supplies the primary visual cortex. We suggest that midget RGCs are not primate innovations, but descendants of evolutionarily ancient types that decreased in size and increased in number as primates evolved, thereby facilitating high visual acuity and increased cortical processing of visual information.

4.
J Pathol ; 259(4): 441-454, 2023 04.
Article in English | MEDLINE | ID: mdl-36656098

ABSTRACT

The crumbs cell polarity complex plays a crucial role in apical-basal epithelial polarity, cellular adhesion, and morphogenesis. Homozygous variants in human CRB1 result in autosomal recessive Leber congenital amaurosis (LCA) and retinitis pigmentosa (RP), with no established genotype-phenotype correlation. The associated protein complexes have key functions in developmental pathways; however, the underlying disease mechanism remains unclear. Using the oko meduzym289/m289 (crb2a-/- ) zebrafish, we performed integrative transcriptomic (RNA-seq data) and methylomic [reduced representation bisulphite sequencing (RRBS)] analysis of whole retina to identify dysregulated genes and pathways. Delayed retinal cell specification was identified in both the crb2a-/- zebrafish and CRB1 patient-derived retinal organoids, highlighting the dysfunction of cell cycle modulation and epigenetic transcriptional control. Differential DNA methylation analysis revealed novel hypermethylated pathways involving biological adhesion, Hippo, and transforming growth factor ß (TGFß) signalling. By integrating gene expression with DNA methylation using functional epigenetic modules (FEM), we identified six key modules involving cell cycle control and disturbance of TGFß, bone morphogenetic protein (BMP), Hippo, and SMAD protein signal transduction pathways, revealing significant interactome hotspots relevant to crb2a function and confirming the epigenetic control of gene regulation in early retinal development, which points to a novel mechanism underlying CRB1-retinopathies. © 2023 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.


Subject(s)
Cell Polarity , Zebrafish , Animals , Humans , Zebrafish/genetics , Cell Polarity/genetics , Retina/metabolism , Cell Cycle , Epigenesis, Genetic , Eye Proteins/genetics , Eye Proteins/metabolism , Membrane Proteins/metabolism , Nerve Tissue Proteins/metabolism , Zebrafish Proteins/genetics , Zebrafish Proteins/metabolism
5.
Neuropathol Appl Neurobiol ; 48(6): e12836, 2022 10.
Article in English | MEDLINE | ID: mdl-35836354

ABSTRACT

AIMS: Frontotemporal dementias are neuropathologically characterised by frontotemporal lobar degeneration (FTLD). Intraneuronal inclusions of transactive response DNA-binding protein 43 kDa (TDP-43) are the defining pathological hallmark of approximately half of the FTLD cases, being referred to as FTLD-TDP. The classification of FTLD-TDP into five subtypes (Type A to Type E) is based on pathologic phenotypes; however, the molecular determinants underpinning the phenotypic heterogeneity of FTLD-TDP are not well known. It is currently undetermined whether TDP-43 post-translational modifications (PTMs) may be related to the phenotypic diversity of the FTLDs. Thus, the investigation of FTLD-TDP Type A and Type B, associated with GRN and C9orf72 mutations, becomes essential. METHODS: Immunohistochemistry was used to identify and map the intraneuronal inclusions. Sarkosyl-insoluble TDP-43 was extracted from brains of GRN and C9orf72 mutation carriers post-mortem and studied by Western blot analysis, immuno-electron microscopy and mass spectrometry. RESULTS: Filaments of TDP-43 were present in all FTLD-TDP preparations. PTM profiling identified multiple phosphorylated, N-terminal acetylated or otherwise modified residues, several of which have been identified for the first time as related to sarkosyl-insoluble TDP-43. Several PTMs were specific for either Type A or Type B, while others were identified in both types. CONCLUSIONS: The current results provide evidence that the intraneuronal inclusions in the two genetic diseases contain TDP-43 filaments. The discovery of novel, potentially type-specific TDP-43 PTMs emphasises the need to determine the mechanisms leading to filament formation and PTMs, and the necessity of exploring the validity and occupancy of PTMs in a prognostic/diagnostic setting.


Subject(s)
Frontotemporal Dementia , Frontotemporal Lobar Degeneration , C9orf72 Protein/genetics , C9orf72 Protein/metabolism , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Frontotemporal Dementia/genetics , Frontotemporal Lobar Degeneration/pathology , Humans , Progranulins/genetics , Progranulins/metabolism , Protein Processing, Post-Translational
6.
JCI Insight ; 6(9)2021 05 10.
Article in English | MEDLINE | ID: mdl-33755601

ABSTRACT

Choroideremia (CHM) is an X-linked recessive chorioretinal dystrophy caused by mutations in CHM, encoding for Rab escort protein 1 (REP1). Loss of functional REP1 leads to the accumulation of unprenylated Rab proteins and defective intracellular protein trafficking, the putative cause for photoreceptor, retinal pigment epithelium (RPE), and choroidal degeneration. CHM is ubiquitously expressed, but adequate prenylation is considered to be achieved, outside the retina, through the isoform REP2. Recently, the possibility of systemic features in CHM has been debated; therefore, in this study, whole metabolomic analysis of plasma samples from 25 CHM patients versus age- and sex-matched controls was performed. Results showed plasma alterations in oxidative stress-related metabolites, coupled with alterations in tryptophan metabolism, leading to significantly raised serotonin levels. Lipid metabolism was disrupted with decreased branched fatty acids and acylcarnitines, suggestive of dysfunctional lipid oxidation, as well as imbalances of several sphingolipids and glycerophospholipids. Targeted lipidomics of the chmru848 zebrafish provided further evidence for dysfunction, with the use of fenofibrate over simvastatin circumventing the prenylation pathway to improve the lipid profile and increase survival. This study provides strong evidence for systemic manifestations of CHM and proposes potentially novel pathomechanisms and targets for therapeutic consideration.


Subject(s)
Adaptor Proteins, Signal Transducing/genetics , Choroideremia/metabolism , Lipid Metabolism/genetics , Oxidative Stress/genetics , Zebrafish Proteins/genetics , Adult , Animals , Case-Control Studies , Choroideremia/genetics , Fenofibrate/pharmacology , Glycerophospholipids/metabolism , Humans , Hypolipidemic Agents/pharmacology , Lipid Metabolism/drug effects , Lipidomics , Male , Metabolomics , Middle Aged , Prenylation , Serotonin/metabolism , Simvastatin/pharmacology , Sphingolipids/metabolism , Tryptophan/metabolism , Young Adult , Zebrafish
7.
J Neuropathol Exp Neurol ; 78(7): 585-594, 2019 07 01.
Article in English | MEDLINE | ID: mdl-31165862

ABSTRACT

In sporadic and dominantly inherited Alzheimer disease (AD), aggregation of both tau and α-synuclein may occur in neurons. Aggregates of either protein occur separately or coexist in the same neuron. It is not known whether the coaggregation of tau and α-synuclein in dominantly inherited AD occurs in association with specific mutations of the APP, PSEN1, or PSEN2 genes. The aim of this study was to provide the first characterization of the neuropathologic phenotype associated with the PSEN1 p.A396T mutation in a man who was clinically diagnosed as having AD, but for whom the PSEN1 mutation was found postmortem. The proband, who was 56 years old when cognitive impairment first manifested, died at 67 years of age. Neuropathologically, 3 proteinopathies were present in the brain. Widespread α-synuclein-immunopositive neuronal inclusions suggested a diagnosis of diffuse Lewy body disease (DLBD), while severe and widespread tau and amyloid-ß pathologies confirmed the clinical diagnosis of AD. Immunohistochemistry revealed the coexistence of tau and α-synuclein aggregates in the same neuron. Neuropathologic and molecular studies in brains of carriers of the PSEN1 p.A396T mutation or other PSEN1 or PSEN2 mutations associated with the coexistence of DLBD and AD are needed to clarify whether tau and α-synuclein proteinopathies occur independently or whether a relationship exists between α-synuclein and tau that might explain the mechanisms of coaggregation.


Subject(s)
Alzheimer Disease/genetics , Alzheimer Disease/pathology , Lewy Body Disease/genetics , Lewy Body Disease/pathology , Presenilin-1/genetics , Aged , Alzheimer Disease/complications , Amyloid beta-Peptides/genetics , Brain/pathology , Disease Progression , Humans , Immunohistochemistry , Lewy Body Disease/complications , Male , Middle Aged , Mutation/genetics , Neurons/pathology , Phenotype , Tomography, X-Ray Computed , tau Proteins/genetics
8.
Sci Rep ; 9(1): 3793, 2019 03 07.
Article in English | MEDLINE | ID: mdl-30846767

ABSTRACT

Mutations in KCNJ13 are associated with two retinal disorders; Leber congenital amaurosis (LCA) and snowflake vitreoretinal degeneration (SVD). We examined the retina of kcnj13 mutant zebrafish (obelixtd15, c.502T > C p.[Phe168Leu]) to provide new insights into the pathophysiology underlying these conditions. Detailed phenotyping of obelixtd15 fish revealed a late onset retinal degeneration at 12 months. Electron microscopy of the obelixtd15 retinal pigment epithelium (RPE) uncovered reduced phagosome clearance and increased mitochondrial number and size prior any signs of retinal degeneration. Melanosome distribution was also affected in dark-adapted 12-month obelixtd15 fish. At 6 and 12 months, ATP levels were found to be reduced along with increased expression of glial fibrillary acidic protein and heat shock protein 60. Quantitative RT-PCR of polg2, fis1, opa1, sod1/2 and bcl2a from isolated retina showed expression changes consistent with altered mitochondrial activity and retinal stress. We propose that the retinal disease in this model is primarily a failure of phagosome physiology with a secondary mitochondrial dysfunction. Our findings suggest that alterations in the RPE and photoreceptor cellular organelles may contribute to KCNJ13-related retinal degeneration and provide a therapeutic target.


Subject(s)
Mitochondria/metabolism , Phagosomes/pathology , Potassium Channels, Inwardly Rectifying/genetics , Retinal Degeneration/diagnostic imaging , Retinal Degeneration/genetics , Retinal Pigment Epithelium/pathology , Animals , Melanosomes/genetics , Melanosomes/metabolism , Mitochondria/genetics , Mitochondria/pathology , Mutation , Potassium Channels, Inwardly Rectifying/metabolism , Retina/diagnostic imaging , Retina/pathology , Retina/ultrastructure , Retinal Degeneration/pathology , Tomography, Optical Coherence , Zebrafish/genetics
9.
Acta Neuropathol Commun ; 6(1): 114, 2018 10 29.
Article in English | MEDLINE | ID: mdl-30373672

ABSTRACT

This study aimed to determine the pattern of [18F]flortaucipir uptake in individuals affected by Gerstmann-Sträussler-Scheinker disease (GSS) associated with the PRNP F198S mutation. The aims were to: 1) determine the pattern of [18F]flortaucipir uptake in two GSS patients; 2) compare tau distribution by [18F]flortaucipir PET imaging among three groups: two GSS patients, two early onset Alzheimer's disease patients (EOAD), two cognitively normal older adults (CN); 3) validate the PET imaging by comparing the pattern of [18F]flortaucipir uptake, in vivo, with that of tau neuropathology, post-mortem. Scans were processed to generate standardized uptake value ratio (SUVR) images. Regional [18F]flortaucipir SUVR was extracted and compared between GSS patients, EOADs, and CNs. Neuropathology and tau immunohistochemistry were carried out post-mortem on a GSS patient who died 9 months after the [18F]flortaucipir scan. The GSS patients were at different stages of disease progression. Patient A was mildly to moderately affected, suffering from cognitive, psychiatric, and ataxia symptoms. Patient B was moderately to severely affected, suffering from ataxia and parkinsonism accompanied by psychiatric and cognitive symptoms. The [18F]flortaucipir scans showed uptake in frontal, cingulate, and insular cortices, as well as in the striatum and thalamus. Uptake was greater in Patient B than in Patient A. Both GSS patients showed greater uptake in the striatum and thalamus than the EOADs and greater uptake in all evaluated regions than the CNs. Thioflavin S fluorescence and immunohistochemistry revealed that the anatomical distribution of tau pathology is consistent with that of [18F]flortaucipir uptake. In GSS patients, the neuroanatomical localization of pathologic tau, as detected by [18F]flortaucipir, suggests correlation with the psychiatric, motor, and cognitive symptoms. The topography of uptake in PRNP F198S GSS is strikingly different from that seen in AD. Further studies of the sensitivity, specificity, and anatomical patterns of tau PET in diseases with tau pathology are warranted.


Subject(s)
Carbolines/pharmacokinetics , Gerstmann-Straussler-Scheinker Disease/diagnostic imaging , Gerstmann-Straussler-Scheinker Disease/metabolism , Positron-Emission Tomography , tau Proteins/metabolism , Aged , Alzheimer Disease/diagnostic imaging , Brain/diagnostic imaging , Brain/metabolism , DNA-Binding Proteins/metabolism , Female , Gerstmann-Straussler-Scheinker Disease/genetics , Humans , Infant , Magnetic Resonance Imaging , Male , Middle Aged , Mutation/genetics , Prion Proteins/genetics
10.
PLoS Genet ; 13(6): e1006828, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28604778

ABSTRACT

Cleft palate is a common congenital disorder that affects up to 1 in 2500 live births and results in considerable morbidity to affected individuals and their families. The aetiology of cleft palate is complex with both genetic and environmental factors implicated. Mutations in the transcription factor p63 are one of the major individual causes of cleft palate; however, the gene regulatory networks in which p63 functions remain only partially characterized. Our findings demonstrate that p63 functions as an essential regulatory molecule in the spatio-temporal control of palatal epithelial cell fate to ensure appropriate fusion of the palatal shelves. Initially, p63 induces periderm formation and controls its subsequent maintenance to prevent premature adhesion between adhesion-competent, intra-oral epithelia. Subsequently, TGFß3-induced down-regulation of p63 in the medial edge epithelia of the palatal shelves is a pre-requisite for palatal fusion by facilitating periderm migration from, and reducing the proliferative potential of, the midline epithelial seam thereby preventing cleft palate.


Subject(s)
Cleft Palate/genetics , Gene Regulatory Networks/genetics , Phosphoproteins/genetics , Trans-Activators/genetics , Transforming Growth Factor beta3/genetics , Animals , Cell Movement/genetics , Cell Proliferation/genetics , Cleft Palate/physiopathology , Disease Models, Animal , Epithelial Cells/metabolism , Gene Expression Regulation, Developmental , Humans , Mice , Mutation , Phosphoproteins/biosynthesis , Signal Transduction/genetics , Trans-Activators/biosynthesis
12.
Exp Eye Res ; 155: 24-37, 2017 02.
Article in English | MEDLINE | ID: mdl-28065590

ABSTRACT

Between 5 and 70% of genetic disease is caused by in-frame nonsense mutations, which introduce a premature termination codon (PTC) within the disease-causing gene. Consequently, during translation, non-functional or gain-of-function truncated proteins of pathological significance, are formed. Approximately 50% of all inherited retinal disorders have been associated with PTCs, highlighting the importance of novel pharmacological or gene correction therapies in ocular disease. Pharmacological nonsense suppression of PTCs could delineate a therapeutic strategy that treats the mutation in a gene- and disease-independent manner. This approach aims to suppress the fidelity of the ribosome during protein synthesis so that a near-cognate aminoacyl-tRNA, which shares two of the three nucleotides of the PTC, can be inserted into the peptide chain, allowing translation to continue, and a full-length functional protein to be produced. Here we discuss the mechanisms and evidence of nonsense suppression agents, including the small molecule drug ataluren (or PTC124) and next generation 'designer' aminoglycosides, for the treatment of genetic eye disease.


Subject(s)
Codon, Nonsense , Eye Diseases/therapy , Eye Proteins/genetics , Genetic Therapy/methods , Eye Diseases/genetics , Eye Diseases/metabolism , Eye Proteins/metabolism , Humans
14.
Am J Hum Genet ; 90(1): 69-75, 2012 Jan 13.
Article in English | MEDLINE | ID: mdl-22197488

ABSTRACT

Pterygium syndromes are complex congenital disorders that encompass several distinct clinical conditions characterized by multiple skin webs affecting the flexural surfaces often accompanied by craniofacial anomalies. In severe forms, such as in the autosomal-recessive Bartsocas-Papas syndrome, early lethality is common, complicating the identification of causative mutations. Using exome sequencing in a consanguineous family, we identified the homozygous mutation c.1127C>A in exon 7 of RIPK4 that resulted in the introduction of the nonsense mutation p.Ser376X into the encoded ankyrin repeat-containing kinase, a protein that is essential for keratinocyte differentiation. Subsequently, we identified a second mutation in exon 2 of RIPK4 (c.242T>A) that resulted in the missense variant p.Ile81Asn in the kinase domain of the protein. We have further demonstrated that RIPK4 is a direct transcriptional target of the protein p63, a master regulator of stratified epithelial development, which acts as a nodal point in the cascade of molecular events that prevent pterygium syndromes.


Subject(s)
Cleft Lip/genetics , Cleft Palate/genetics , Exome , Protein Serine-Threonine Kinases/genetics , Pterygium/congenital , Amino Acid Sequence , Animals , Base Sequence , Child , Cleft Lip/diagnosis , Cleft Palate/diagnosis , Consanguinity , Craniofacial Abnormalities/genetics , Exons , Genes, Recessive , Genetic Loci , Humans , Keratinocytes/metabolism , Male , Mice , Molecular Sequence Data , Mutation , Phosphoproteins/metabolism , Pterygium/diagnosis , Pterygium/genetics , Severity of Illness Index , Skin Abnormalities , Trans-Activators/metabolism , Transcription Factors/metabolism , Tumor Suppressor Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...