Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
bioRxiv ; 2023 Dec 19.
Article in English | MEDLINE | ID: mdl-38106154

ABSTRACT

Generating animal models for individual patients within clinically-useful timeframes holds great potential toward enabling personalized medicine approaches for genetic epilepsies. The ability to rapidly incorporate patient-specific genomic variants into model animals recapitulating elements of the patient's clinical manifestations would enable applications ranging from validation and characterization of pathogenic variants to personalized models for tailoring pharmacotherapy to individual patients. Here, we demonstrate generation of an animal model of an individual epilepsy patient with an ultra-rare variant of the NMDA receptor subunit GRIN2A, without the need for germline transmission and breeding. Using in utero prime editing in the brain of wild-type mice, our approach yielded high in vivo editing precision and induced frequent, spontaneous seizures which mirrored specific elements of the patient's clinical presentation. Leveraging the speed and versatility of this approach, we introduce PegAssist, a generalizable workflow to generate bedside-to-bench animal models of individual patients within weeks. The capability to produce individualized animal models rapidly and cost-effectively will reduce barriers to access for precision medicine, and will accelerate drug development by offering versatile in vivo platforms to identify compounds with efficacy against rare neurological conditions.

2.
CRISPR J ; 6(5): 447-461, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37713292

ABSTRACT

Cas9 targets genomic loci with high specificity. For knockin with double-strand break repair, however, Cas9 often leads to unintended on-target knockout rather than intended edits. This imprecision is a barrier for direct in vivo editing where clonal selection is not feasible. In this study, we demonstrate a high-throughput workflow to comparatively assess on-target efficiency and precision of editing outcomes. Using this workflow, we screened combinations of donor DNA and Cas9 variants, as well as fusions to DNA repair proteins. This yielded novel high-performance double-strand break repair editing agents and combinatorial optimizations, yielding increases in knockin efficiency and precision. Cas9-RC, a novel fusion Cas9 flanked by eRad18 and CtIP[HE], increased knockin performance in vitro and in vivo in the developing mouse brain. Continued comparative assessment of editing efficiency and precision with this framework will further the development of high-performance editing agents for in vivo knockin and future genome therapeutics.


Subject(s)
CRISPR-Cas Systems , Gene Editing , Animals , Mice , CRISPR-Cas Systems/genetics , CRISPR-Associated Protein 9/genetics , DNA Repair/genetics , DNA Breaks, Double-Stranded
3.
Neuron ; 109(21): 3361-3364, 2021 11 03.
Article in English | MEDLINE | ID: mdl-34735787

ABSTRACT

Leveraging breadth and depth of the scientific workforce invites creativity, relevance, and differing views that directly tie into innovation and problem solving. The NIH BRAIN Initiative is using a multi-pronged strategy to enhance diversity and inclusion toward promoting the best science.


Subject(s)
Creativity , Problem Solving , Workforce
4.
Nucleic Acids Res ; 41(21): 9967-75, 2013 Nov.
Article in English | MEDLINE | ID: mdl-23982518

ABSTRACT

Biological computing circuits can enhance our ability to control cellular functions and have potential applications in tissue engineering and medical treatments. Transcriptional activator-like effectors (TALEs) represent attractive components of synthetic gene regulatory circuits, as they can be designed de novo to target a given DNA sequence. We here demonstrate that TALEs can perform Boolean logic computation in mammalian cells. Using a split-intein protein-splicing strategy, we show that a functional TALE can be reconstituted from two inactive parts, thus generating two-input AND logic computation. We further demonstrate three-piece intein splicing in mammalian cells and use it to perform three-input AND computation. Using methods for random as well as targeted insertion of these relatively large genetic circuits, we show that TALE-based logic circuits are functional when integrated into the genome of mouse embryonic stem cells. Comparing construct variants in the same genomic context, we modulated the strength of the TALE-responsive promoter to improve the output of these circuits. Our work establishes split TALEs as a tool for building logic computation with the potential of controlling expression of endogenous genes or transgenes in response to a combination of cellular signals.


Subject(s)
Embryonic Stem Cells/metabolism , Trans-Activators/metabolism , Animals , Cells, Cultured , Gene Regulatory Networks , Humans , Inteins , Mice , Protein Splicing , Trans-Activators/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...