Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 79
Filter
1.
Sci Rep ; 14(1): 934, 2024 01 09.
Article in English | MEDLINE | ID: mdl-38195626

ABSTRACT

Translational oncology research strives to explore a new aspect: identifying subgroups that exhibit treatment response even during pre-clinical phases. In this study, we focus on PDX models and their implementation in mouse clinical trials (MCT). Our primary objective was to identify subgroups with different treatment responses using Latent Class Mixed Model (LCMM).We used a public dataset and focused on one treatment, encorafenib, and two indications, melanoma and colorectal cancer, for which efficacy depends on a specific mutation BRAF V600E. One LCMM per indication was implemented to classify treatment responses at the PDX level, analyzing the growth kinetics of treated tumors and matched controls within the PDX models. A simulation study was carried out to explore the performance of LCMM in this context. For both applications, LCMM identified classes for which the higher the proportion of mutated BRAF V600E PDX models the greater the treatment effect, which is aligned with encorafenib use recommendations. The simulation study showed that LCMM could identify classes with large differences in treatment effects. LCMM is a suitable tool for MCT to explore treatment response subgroups of PDX. Once these subgroups are defined, characterization of their phenotypes/genotypes could be performed to explore treatment response predictors.


Subject(s)
Medicine , Proto-Oncogene Proteins B-raf , Animals , Mice , Proto-Oncogene Proteins B-raf/genetics , Carbamates , Drug Discovery
2.
EClinicalMedicine ; 65: 102283, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37877001

ABSTRACT

Background: Interventional trials that evaluate treatment effects using surrogate endpoints have become increasingly common. This paper describes four linked empirical studies and the development of a framework for defining, interpreting and reporting surrogate endpoints in trials. Methods: As part of developing the CONSORT (Consolidated Standards of Reporting Trials) and SPIRIT (Standard Protocol Items: Recommendations for Interventional Trials) extensions for randomised trials reporting surrogate endpoints, we undertook a scoping review, e-Delphi study, consensus meeting, and a web survey to examine current definitions and stakeholder (including clinicians, trial investigators, patients and public partners, journal editors, and health technology experts) interpretations of surrogate endpoints as primary outcome measures in trials. Findings: Current surrogate endpoint definitional frameworks are inconsistent and unclear. Surrogate endpoints are used in trials as a substitute of the treatment effects of an intervention on the target outcome(s) of ultimate interest, events measuring how patients feel, function, or survive. Traditionally the consideration of surrogate endpoints in trials has focused on biomarkers (e.g., HDL cholesterol, blood pressure, tumour response), especially in the medical product regulatory setting. Nevertheless, the concept of surrogacy in trials is potentially broader. Intermediate outcomes that include a measure of function or symptoms (e.g., angina frequency, exercise tolerance) can also be used as substitute for target outcomes (e.g., all-cause mortality)-thereby acting as surrogate endpoints. However, we found a lack of consensus among stakeholders on accepting and interpreting intermediate outcomes in trials as surrogate endpoints or target outcomes. In our assessment, patients and health technology assessment experts appeared more likely to consider intermediate outcomes to be surrogate endpoints than clinicians and regulators. Interpretation: There is an urgent need for better understanding and reporting on the use of surrogate endpoints, especially in the setting of interventional trials. We provide a framework for the definition of surrogate endpoints (biomarkers and intermediate outcomes) and target outcomes in trials to improve future reporting and aid stakeholders' interpretation and use of trial surrogate endpoint evidence. Funding: SPIRIT-SURROGATE/CONSORT-SURROGATE project is Medical Research Council Better Research Better Health (MR/V038400/1) funded.

3.
Cell Rep ; 42(9): 113101, 2023 09 26.
Article in English | MEDLINE | ID: mdl-37691146

ABSTRACT

Ebola virus disease is a severe hemorrhagic fever with a high fatality rate. We investigate transcriptome profiles at 3 h, 1 day, and 7 days after vaccination with Ad26.ZEBOV and MVA-BN-Filo. 3 h after Ad26.ZEBOV injection, we observe an increase in genes related to antigen presentation, sensing, and T and B cell receptors. The highest response occurs 1 day after Ad26.ZEBOV injection, with an increase of the gene expression of interferon-induced antiviral molecules, monocyte activation, and sensing receptors. This response is regulated by the HESX1, ATF3, ANKRD22, and ETV7 transcription factors. A plasma cell signature is observed on day 7 post-Ad26.ZEBOV vaccination, with an increase of CD138, MZB1, CD38, CD79A, and immunoglobulin genes. We have identified early expressed genes correlated with the magnitude of the antibody response 21 days after the MVA-BN-Filo and 364 days after Ad26.ZEBOV vaccinations. Our results provide early gene signatures that correlate with vaccine-induced Ebola virus glycoprotein-specific antibodies.


Subject(s)
Ebola Vaccines , Ebolavirus , Hemorrhagic Fever, Ebola , Humans , Ebola Vaccines/genetics , Antibody Formation , Transcriptome/genetics , Vaccination , Antibodies, Viral , Vaccinia virus
5.
Cancer Res Commun ; 3(1): 140-147, 2023 01.
Article in English | MEDLINE | ID: mdl-36968232

ABSTRACT

In translational oncology research, the patient-derived xenograft (PDX) model and its use in mouse clinical trials (MCT) are increasingly described. This involves transplanting a human tumor into a mouse and studying its evolution during follow-up or until death. A MCT contains several PDXs in which several mice are randomized to different treatment arms. Our aim was to compare longitudinal modeling of tumor growth using mixed and joint models. Mixed and joint models were compared in a real MCT (N = 225 mice) to estimate the effect of a chemotherapy and a simulation study. Mixed models assume that death is predictable by observed tumor volumes (data missing at random, MAR) while the joint models assume that death depends on nonobserved tumor volumes (data missing not at random, MNAR). In the real dataset, of 103 deaths, 97 mice were sacrificed when reaching a predetermined tumor size (MAR data). Joint and mixed model estimates of tumor growth slopes differed significantly [0.24 (0.13;0.36)log(mm3)/week for mixed model vs. -0.02 [-0.16;0.11] for joint model]. By disrupting the MAR process of mice deaths (inducing MNAR process), the estimate of the joint model was 0.24 [0.04;0.45], close to mixed model estimation for the original dataset. The simulation results confirmed the bias in the slope estimate from the joint model. Using a MCT example, we show that joint model can provide biased estimates under MAR mechanisms of dropout. We thus recommend to carefully choose the statistical model according to nature of mice deaths. Significance: This work brings new arguments to a controversy on the correct choice of statistical modeling methods for the analysis of MCTs. We conclude that mixed models are more robust than joint models.


Subject(s)
Models, Statistical , Neoplasms , Humans , Animals , Mice , Heterografts , Computer Simulation , Disease Models, Animal , Neoplasms/drug therapy
6.
Front Immunol ; 14: 1117320, 2023.
Article in English | MEDLINE | ID: mdl-36845105

ABSTRACT

The crosstalk between NK cells and their surrounding environment is enabled through activating and inhibitory receptors, which tightly control NK cell activity. The co-inhibitory receptor TIGIT decreases NK cell cytotoxicity and is involved in NK cell exhaustion, but has also been associated with liver regeneration, highlighting that the contribution of human intrahepatic CD56bright NK cells in regulating tissue homeostasis remains incompletely understood. A targeted single-cell mRNA analysis revealed distinct transcriptional differences between matched human peripheral blood and intrahepatic CD56bright NK cells. Multiparameter flow cytometry identified a cluster of intrahepatic NK cells with overlapping high expression of CD56, CD69, CXCR6, TIGIT and CD96. Intrahepatic CD56bright NK cells also expressed significantly higher protein surface levels of TIGIT, and significantly lower levels of DNAM-1 compared to matched peripheral blood CD56bright NK cells. TIGIT+ CD56bright NK cells showed diminished degranulation and TNF-α production following stimulation. Co-incubation of peripheral blood CD56bright NK cells with human hepatoma cells or primary human hepatocyte organoids resulted in migration of NK cells into hepatocyte organoids and upregulation of TIGIT and downregulation of DNAM-1 expression, in line with the phenotype of intrahepatic CD56bright NK cells. Intrahepatic CD56bright NK cells represent a transcriptionally, phenotypically, and functionally distinct population of NK cells that expresses higher levels of TIGIT and lower levels of DNAM-1 than matched peripheral blood CD56bright NK cells. Increased expression of inhibitory receptors by NK cells within the liver environment can contribute to tissue homeostasis and reduction of liver inflammation.


Subject(s)
Killer Cells, Natural , Liver , Humans , CD56 Antigen/metabolism , Killer Cells, Natural/metabolism , Liver/metabolism , Receptors, Immunologic/genetics , Receptors, Immunologic/metabolism , Flow Cytometry
7.
Cell Mol Immunol ; 20(2): 201-213, 2023 02.
Article in English | MEDLINE | ID: mdl-36600048

ABSTRACT

Gastrointestinal infections are a major cause for serious clinical complications in infants. The induction of antibody responses by B cells is critical for protective immunity against infections and requires CXCR5+PD-1++ CD4+ T cells (TFH cells). We investigated the ontogeny of CXCR5+PD-1++ CD4+ T cells in human intestines. While CXCR5+PD-1++ CD4+ T cells were absent in fetal intestines, CXCR5+PD-1++ CD4+ T cells increased after birth and were abundant in infant intestines, resulting in significant higher numbers compared to adults. These findings were supported by scRNAseq analyses, showing increased frequencies of CD4+ T cells with a TFH gene signature in infant intestines compared to blood. Co-cultures of autologous infant intestinal CXCR5+PD-1+/-CD4+ T cells with B cells further demonstrated that infant intestinal TFH cells were able to effectively promote class switching and antibody production by B cells. Taken together, we demonstrate that functional TFH cells are numerous in infant intestines, making them a promising target for oral pediatric vaccine strategies.


Subject(s)
CD4-Positive T-Lymphocytes , Programmed Cell Death 1 Receptor , T-Lymphocytes, Helper-Inducer , Adult , Child , Humans , Infant , B-Lymphocytes , Receptors, CXCR5 , CD4-Positive T-Lymphocytes/immunology
8.
N Engl J Med ; 387(26): 2411-2424, 2022 12 29.
Article in English | MEDLINE | ID: mdl-36516078

ABSTRACT

BACKGROUND: Questions remain concerning the rapidity of immune responses and the durability and safety of vaccines used to prevent Zaire Ebola virus disease. METHODS: We conducted two randomized, placebo-controlled trials - one involving adults and one involving children - to evaluate the safety and immune responses of three vaccine regimens against Zaire Ebola virus disease: Ad26.ZEBOV followed by MVA-BN-Filo 56 days later (the Ad26-MVA group), rVSVΔG-ZEBOV-GP followed by placebo 56 days later (the rVSV group), and rVSVΔG-ZEBOV-GP followed by rVSVΔG-ZEBOV-GP 56 days later (the rVSV-booster group). The primary end point was antibody response at 12 months, defined as having both a 12-month antibody concentration of at least 200 enzyme-linked immunosorbent assay units (EU) per milliliter and an increase from baseline in the antibody concentration by at least a factor of 4. RESULTS: A total of 1400 adults and 1401 children underwent randomization. Among both adults and children, the incidence of injection-site reactions and symptoms (e.g., feverishness and headache) was higher in the week after receipt of the primary and second or booster vaccinations than after receipt of placebo but not at later time points. These events were largely low-grade. At month 12, a total of 41% of adults (titer, 401 EU per milliliter) and 78% of children (titer, 828 EU per milliliter) had a response in the Ad26-MVA group; 76% (titer, 992 EU per milliliter) and 87% (titer, 1415 EU per milliliter), respectively, had a response in the rVSV group; 81% (titer, 1037 EU per milliliter) and 93% (titer, 1745 EU per milliliter), respectively, had a response in the rVSV-booster group; and 3% (titer, 93 EU per milliliter) and 4% (titer, 67 EU per milliliter), respectively, had a response in the placebo group (P<0.001 for all comparisons of vaccine with placebo). In both adults and children, antibody responses with vaccine differed from those with placebo beginning on day 14. CONCLUSIONS: No safety concerns were identified in this trial. With all three vaccine regimens, immune responses were seen from day 14 through month 12. (Funded by the National Institutes of Health and others; PREVAC ClinicalTrials.gov number, NCT02876328; EudraCT numbers, 2017-001798-18 and 2017-001798-18/3rd; and Pan African Clinical Trials Registry number, PACTR201712002760250.).


Subject(s)
Ebola Vaccines , Ebolavirus , Hemorrhagic Fever, Ebola , Adult , Child , Humans , Antibodies, Viral , Democratic Republic of the Congo , Ebola Vaccines/therapeutic use , Hemorrhagic Fever, Ebola/prevention & control
9.
Front Immunol ; 13: 922252, 2022.
Article in English | MEDLINE | ID: mdl-35911762

ABSTRACT

NK cells play a pivotal role in viral immunity, utilizing a large array of activating and inhibitory receptors to identify and eliminate virus-infected cells. Killer-cell immunoglobulin-like receptors (KIRs) represent a highly polymorphic receptor family, regulating NK cell activity and determining the ability to recognize target cells. Human leukocyte antigen (HLA) class I molecules serve as the primary ligand for KIRs. Herein, HLA-C stands out as being the dominant ligand for the majority of KIRs. Accumulating evidence indicated that interactions between HLA-C and its inhibitory KIR2DL receptors (KIR2DL1/L2/L3) can drive HIV-1-mediated immune evasion and thus may contribute to the intrinsic control of HIV-1 infection. Of particular interest in this context is the recent observation that HIV-1 is able to adapt to host HLA-C genotypes through Vpu-mediated downmodulation of HLA-C. However, our understanding of the complex interplay between KIR/HLA immunogenetics, NK cell-mediated immune pressure and HIV-1 immune escape is still limited. Therefore, we investigated the impact of specific KIR/HLA-C combinations on the NK cell receptor repertoire and HIV-1 Vpu protein sequence variations of 122 viremic, untreated HIV-1+ individuals. Compared to 60 HIV-1- controls, HIV-1 infection was associated with significant changes within the NK cell receptor repertoire, including reduced percentages of NK cells expressing NKG2A, CD8, and KIR2DS4. In contrast, the NKG2C+ and KIR3DL2+ NK cell sub-populations from HIV-1+ individuals was enlarged compared to HIV-1- controls. Stratification along KIR/HLA-C genotypes revealed a genotype-dependent expansion of KIR2DL1+ NK cells that was ultimately associated with increased binding affinities between KIR2DL1 and HLA-C allotypes. Lastly, our data hinted to a preferential selection of Vpu sequence variants that were associated with HLA-C downmodulation in individuals with high KIR2DL/HLA-C binding affinities. Altogether, our study provides evidence that HIV-1-associated changes in the KIR repertoire of NK cells are to some extent predetermined by host KIR2DL/HLA-C genotypes. Furthermore, analysis of Vpu sequence polymorphisms indicates that differential KIR2DL/HLA-C binding affinities may serve as an additional mechanism how host genetics impact immune evasion by HIV-1.


Subject(s)
HIV Infections , HIV-1 , Genotype , HLA-C Antigens/metabolism , Histocompatibility Antigens Class I/genetics , Human Immunodeficiency Virus Proteins/genetics , Humans , Killer Cells, Natural , Ligands , Receptors, KIR/metabolism , Receptors, Natural Killer Cell/metabolism , Viral Regulatory and Accessory Proteins/metabolism , Viroporin Proteins
10.
EMBO Rep ; 23(8): e54133, 2022 08 03.
Article in English | MEDLINE | ID: mdl-35758160

ABSTRACT

NK cells utilize a large array of receptors to screen their surroundings for aberrant or virus-infected cells. Given the vast diversity of receptors expressed on NK cells we seek to identify receptors involved in the recognition of HIV-1-infected cells. By combining an unbiased large-scale screening approach with a functional assay, we identify TRAIL to be associated with NK cell degranulation against HIV-1-infected target cells. Further investigating the underlying mechanisms, we demonstrate that TRAIL is able to elicit multiple effector functions in human NK cells independent of receptor-mediated induction of apoptosis. Direct engagement of TRAIL not only results in degranulation but also IFNγ production. Moreover, TRAIL-mediated NK cell activation is not limited to its cognate death receptors but also decoy receptor I, adding a new perspective to the perceived regulatory role of decoy receptors in TRAIL-mediated cytotoxicity. Based on these findings, we propose that TRAIL not only contributes to the anti-HIV-1 activity of NK cells but also possesses a multifunctional role beyond receptor-mediated induction of apoptosis, acting as a regulator for the induction of different effector functions.


Subject(s)
Cytotoxicity, Immunologic , HIV-1 , TNF-Related Apoptosis-Inducing Ligand/metabolism , Humans , Interferon-gamma/metabolism , Killer Cells, Natural , Lymphocyte Activation
11.
Vaccines (Basel) ; 10(6)2022 May 31.
Article in English | MEDLINE | ID: mdl-35746491

ABSTRACT

Natural killer cells play an important role in the control of viral infections both by regulating acquired immune responses and as potent innate or antibody-mediated cytotoxic effector cells. NK cells have been implicated in control of Ebola virus infections and our previous studies in European trial participants have demonstrated durable activation, proliferation and antibody-dependent NK cell activation after heterologous two-dose Ebola vaccination with adenovirus type 26.ZEBOV followed by modified vaccinia Ankara-BN-Filo. Regional variation in immunity and environmental exposure to pathogens, in particular human cytomegalovirus, have profound impacts on NK cell functional capacity. We therefore assessed the NK cell phenotype and function in African trial participants with universal exposure to HCMV. We demonstrate a significant redistribution of NK cell subsets after vaccine dose two, involving the enrichment of less differentiated CD56dimCD57- and CD56dimFcεR1γ+ (canonical) cells and the increased proliferation of these subsets. Sera taken after vaccine dose two support robust antibody-dependent NK cell activation in a standard NK cell readout; these responses correlate strongly with the concentration of anti-Ebola glycoprotein specific antibodies. These sera also promote comparable IFN-γ production in autologous NK cells taken at baseline and post-vaccine dose two. However, degranulation responses of post-vaccination NK cells were reduced compared to baseline NK cells and these effects could not be directly attributed to alterations in NK cell phenotype after vaccination. These studies demonstrate consistent changes in NK cell phenotypic composition and robust antibody-dependent NK cell function and reveal novel characteristics of these responses after heterologous two dose Ebola vaccination in African individuals.

12.
J Immunol ; 208(12): 2663-2674, 2022 06 15.
Article in English | MEDLINE | ID: mdl-35613727

ABSTRACT

Heterologous prime-boost strategies are of interest for HIV vaccine development. The order of prime-boost components could be important for the induction of T cell responses. In this phase I/II multi-arm trial, three vaccine candidates were used as prime or boost: modified vaccinia Ankara (MVA) HIV-B (coding for Gag, Pol, Nef); HIV LIPO-5 (five lipopeptides from Gag, Pol, Nef); DNA GTU-MultiHIV B (coding for Rev, Nef, Tat, Gag, Env gp160 clade B). Healthy human volunteers (n = 92) were randomized to four groups: 1) MVA at weeks 0/8 + LIPO-5 at weeks 20/28 (M/L); 2) LIPO-5 at weeks 0/8 + MVA at weeks 20/28 (L/M); 3) DNA at weeks 0/4/12 + LIPO-5 at weeks 20/28 (G/L); 4) DNA at weeks 0/4/12 + MVA at weeks 20/28 (G/M). The frequency of IFN-γ-ELISPOT responders at week 30 was 33, 43, 0, and 74%, respectively. Only MVA-receiving groups were further analyzed (n = 62). Frequency of HIV-specific cytokine-positive (IFN-γ, IL-2, or TNF-α) CD4+ T cells increased significantly from week 0 to week 30 (median change of 0.06, 0.11, and 0.10% for M/L, L/M, and G/M, respectively), mainly after MVA vaccinations, and was sustained until week 52. HIV-specific CD8+ T cell responses increased significantly at week 30 in M/L and G/M (median change of 0.02 and 0.05%). Significant whole-blood gene expression changes were observed 2 wk after the first MVA injection, regardless of its use as prime or boost. An MVA gene signature was identified, including 86 genes mainly related to cell cycle pathways. Three prime-boost strategies led to CD4+ and CD8+ T cell responses and to a whole-blood gene expression signature primarily due to their MVA HIV-B component.


Subject(s)
AIDS Vaccines , HIV Infections , HIV-1 , Vaccines, DNA , HIV Infections/prevention & control , Humans , Immunization, Secondary/methods , Transcriptome , Vaccinia virus
13.
Clin Microbiol Infect ; 28(7): 1010-1016, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35304280

ABSTRACT

OBJECTIVES: To assess the efficacy of inhaled ciclesonide in reducing the risk of adverse outcomes in COVID-19 outpatients at risk of developing severe illness. METHODS: COVERAGE is an open-label, randomized controlled trial. Outpatients with documented COVID-19, risk factors for aggravation, symptoms for ≤7 days, and absence of criteria for hospitalization are randomly allocated to either a control arm or one of several experimental arms, including inhaled ciclesonide. The primary efficacy endpoint is COVID-19 worsening (hospitalization, oxygen therapy at home, or death) by Day 14. Other endpoints are adverse events, maximal follow-up score on the WHO Ordinal Scale for Clinical Improvement, sustained alleviation of symptoms, cure, and RT-PCR and blood parameter evolution at Day 7. The trial's Safety Monitoring Board reviewed the first interim analysis of the ciclesonide arm and recommended halting it for futility. The results of this analysis are reported here. RESULTS: The analysis involved 217 participants (control 107, ciclesonide 110), including 111 women and 106 men. Their median age was 63 years (interquartile range 59-68), and 157 of 217 (72.4%) had at least one comorbidity. The median time since first symptom was 4 days (interquartile range 3-5). During the 28-day follow-up, 2 participants died (control 2/107 [1.9%], ciclesonide 0), 4 received oxygen therapy at home and were not hospitalized (control 2/107 [1.9%], ciclesonide 2/110 [1.8%]), and 24 were hospitalized (control 10/107 [9.3%], ciclesonide 14/110 [12.7%]). In intent-to-treat analysis of observed data, 26 participants reached the composite primary endpoint by Day 14, including 12 of 106 (11.3%, 95% CI: 6.0%-18.9%) in the control arm and 14 of 106 (13.2%; 95% CI: 7.4-21.2%) in the ciclesonide arm. Secondary outcomes were similar for both arms. DISCUSSION: Our findings are consistent with the European Medicines Agency's COVID-19 task force statement that there is currently insufficient evidence that inhaled corticosteroids are beneficial for patients with COVID-19.


Subject(s)
COVID-19 Drug Treatment , Aged , Female , Humans , Male , Middle Aged , Outpatients , Oxygen , Pregnenediones , SARS-CoV-2 , Treatment Outcome
14.
PLoS Med ; 19(1): e1003865, 2022 01.
Article in English | MEDLINE | ID: mdl-35015777

ABSTRACT

BACKGROUND: Reoccurring Ebola outbreaks in West and Central Africa have led to serious illness and death in thousands of adults and children. The objective of this study was to assess safety, tolerability, and immunogenicity of the heterologous 2-dose Ad26.ZEBOV, MVA-BN-Filo vaccination regimen in adolescents and children in Africa. METHODS AND FINDINGS: In this multicentre, randomised, observer-blind, placebo-controlled Phase II study, 131 adolescents (12 to 17 years old) and 132 children (4 to 11 years old) were enrolled from Eastern and Western Africa and randomised 5:1 to receive study vaccines or placebo. Vaccine groups received intramuscular injections of Ad26.ZEBOV (5 × 1010 viral particles) and MVA-BN-Filo (1 × 108 infectious units) 28 or 56 days apart; placebo recipients received saline. Primary outcomes were safety and tolerability. Solicited adverse events (AEs) were recorded until 7 days after each vaccination and serious AEs (SAEs) throughout the study. Secondary and exploratory outcomes were humoral immune responses (binding and neutralising Ebola virus [EBOV] glycoprotein [GP]-specific antibodies), up to 1 year after the first dose. Enrolment began on February 26, 2016, and the date of last participant last visit was November 28, 2018. Of the 263 participants enrolled, 217 (109 adolescents, 108 children) received the 2-dose regimen, and 43 (20 adolescents, 23 children) received 2 placebo doses. Median age was 14.0 (range 11 to 17) and 7.0 (range 4 to 11) years for adolescents and children, respectively. Fifty-four percent of the adolescents and 51% of the children were male. All participants were Africans, and, although there was a slight male preponderance overall, the groups were well balanced. No vaccine-related SAEs were reported; solicited AEs were mostly mild/moderate. Twenty-one days post-MVA-BN-Filo vaccination, binding antibody responses against EBOV GP were observed in 100% of vaccinees (106 adolescents, 104 children). Geometric mean concentrations tended to be higher after the 56-day interval (adolescents 13,532 ELISA units [EU]/mL, children 17,388 EU/mL) than the 28-day interval (adolescents 6,993 EU/mL, children 8,007 EU/mL). Humoral responses persisted at least up to Day 365. A limitation of the study is that the follow-up period was limited to 365 days for the majority of the participants, and so it was not possible to determine whether immune responses persisted beyond this time period. Additionally, formal statistical comparisons were not preplanned but were only performed post hoc. CONCLUSIONS: The heterologous 2-dose vaccination was well tolerated in African adolescents and children with no vaccine-related SAEs. All vaccinees displayed anti-EBOV GP antibodies after the 2-dose regimen, with higher responses in the 56-day interval groups. The frequency of pyrexia after vaccine or placebo was higher in children than in adolescents. These data supported the prophylactic indication against EBOV disease in a paediatric population, as licenced in the EU. TRIAL REGISTRATION: ClinicalTrials.gov NCT02564523.


Subject(s)
Ebola Vaccines/adverse effects , Ebolavirus/immunology , Hemorrhagic Fever, Ebola/prevention & control , Immunity, Humoral , Immunogenicity, Vaccine , Adolescent , Africa, Eastern , Africa, Western , Child , Child, Preschool , Female , Humans , Injections, Intramuscular , Male
15.
PLoS Med ; 18(10): e1003813, 2021 10.
Article in English | MEDLINE | ID: mdl-34714820

ABSTRACT

BACKGROUND: We investigated safety, tolerability, and immunogenicity of the heterologous 2-dose Ebola vaccination regimen in healthy and HIV-infected adults with different intervals between Ebola vaccinations. METHODS AND FINDINGS: In this randomised, observer-blind, placebo-controlled Phase II trial, 668 healthy 18- to 70-year-olds and 142 HIV-infected 18- to 50-year-olds were enrolled from 1 site in Kenya and 2 sites each in Burkina Faso, Cote d'Ivoire, and Uganda. Participants received intramuscular Ad26.ZEBOV followed by MVA-BN-Filo at 28-, 56-, or 84-day intervals, or saline. Females represented 31.4% of the healthy adult cohort in contrast to 69.7% of the HIV-infected cohort. A subset of healthy adults received booster vaccination with Ad26.ZEBOV or saline at Day 365. Following vaccinations, adverse events (AEs) were collected until 42 days post last vaccination and serious AEs (SAEs) were recorded from signing of the ICF until the end of the study. The primary endpoint was safety, and the secondary endpoint was immunogenicity. Anti-Ebola virus glycoprotein (EBOV GP) binding and neutralising antibodies were measured at baseline and at predefined time points throughout the study. The first participant was enrolled on 9 November 2015, and the date of last participant's last visit was 12 February 2019. No vaccine-related SAEs and mainly mild-to-moderate AEs were observed among the participants. The most frequent solicited AEs were injection-site pain (local), and fatigue, headache, and myalgia (systemic), respectively. Twenty-one days post-MVA-BN-Filo vaccination, geometric mean concentrations (GMCs) with 95% confidence intervals (CIs) of EBOV GP binding antibodies in healthy adults in 28-, 56-, and 84-day interval groups were 3,085 EU/mL (2,648 to 3,594), 7,518 EU/mL (6,468 to 8,740), and 7,300 EU/mL (5,116 to 10,417), respectively. In HIV-infected adults in 28- and 56-day interval groups, GMCs were 4,207 EU/mL (3,233 to 5,474) and 5,283 EU/mL (4,094 to 6,817), respectively. Antibody responses were observed until Day 365. Ad26.ZEBOV booster vaccination after 1 year induced an anamnestic response. Study limitations include that some healthy adult participants either did not receive dose 2 or received dose 2 outside of their protocol-defined interval and that the follow-up period was limited to 365 days for most participants. CONCLUSIONS: Ad26.ZEBOV, MVA-BN-Filo vaccination was well tolerated and immunogenic in healthy and HIV-infected African adults. Increasing the interval between vaccinations from 28 to 56 days improved the magnitude of humoral immune responses. Antibody levels persisted to at least 1 year, and Ad26.ZEBOV booster vaccination demonstrated the presence of vaccination-induced immune memory. These data supported the approval by the European Union for prophylaxis against EBOV disease in adults and children ≥1 year of age. TRIAL REGISTRATION: ClinicalTrials.gov NCT02564523.


Subject(s)
Ebola Vaccines/adverse effects , Ebola Vaccines/immunology , HIV Infections/complications , HIV Infections/immunology , Vaccination/adverse effects , Adult , Antibodies, Neutralizing/immunology , Antibody Formation/immunology , Dose-Response Relationship, Immunologic , Female , Genetic Vectors/immunology , Glycoproteins/immunology , Humans , Immunity, Cellular/immunology , Male , Placebos , Viral Proteins/immunology
16.
NPJ Vaccines ; 6(1): 19, 2021 Jan 29.
Article in English | MEDLINE | ID: mdl-33514756

ABSTRACT

Natural killer (NK) cells are implicated among immune effectors after vaccination against viral pathogens, including Ebola virus. The two-dose heterologous Ebola virus vaccine regimen, adenovirus type 26.ZEBOV followed by modified vaccinia Ankara-BN-Filo (EBOVAC2 consortium, EU Innovative Medicines Initiative), induces NK cell activation and anti-Ebola glycoprotein (GP) antibody-dependent NK cell activation post-dose 1, which is further elevated post-dose 2. Here, in a multicentre, phase 2 clinical trial (EBL2001), we demonstrate durable ex vivo NK cell activation 180 days after dose 2, with responses enriched in CD56bright NK cells. In vitro antibody-dependent responses to immobilised Ebola GP increased after dose 1, and remained elevated compared to pre-vaccination levels in serum collected 180 days later. Peak NK cell responses were observed post-dose 2 and NK cell IFN-γ responses remained significantly elevated at 180 days post-dose 2. Individual variation in NK cell responses were influenced by both anti-Ebola GP antibody concentrations and intrinsic interindividual differences in NK cell functional capacity. In summary, this study demonstrates durable NK cell responses after Ad26.ZEBOV, MVA-BN-Filo Ebola virus vaccination and could inform the immunological evaluation of future iterations of the vaccine regimen and vaccination schedules.

17.
Trials ; 22(1): 86, 2021 Jan 23.
Article in English | MEDLINE | ID: mdl-33485369

ABSTRACT

INTRODUCTION: The Ebola virus disease (EVD) outbreak in 2014-2016 in West Africa was the largest on record and provided an opportunity for large clinical trials and accelerated efforts to develop an effective and safe preventative vaccine. Multiple questions regarding the safety, immunogenicity, and efficacy of EVD vaccines remain unanswered. To address these gaps in the evidence base, the Partnership for Research on Ebola Vaccines (PREVAC) trial was designed. This paper describes the design, methods, and baseline results of the PREVAC trial and discusses challenges that led to different protocol amendments. METHODS: This is a randomized, double-blind, placebo-controlled phase 2 clinical trial of three vaccine strategies against the Ebola virus in healthy volunteers 1 year of age and above. The three vaccine strategies being studied are the rVSVΔG-ZEBOV-GP vaccine, with and without a booster dose at 56 days, and the Ad26.ZEBOV,MVA-FN-Filo vaccine regimen with Ad26.ZEBOV given as the first dose and the MVA-FN-Filo vaccination given 56 days later. There have been 4 versions of the protocol with those enrolled in Version 4.0 comprising the primary analysis cohort. The primary endpoint is based on the antibody titer against the Ebola virus surface glycoprotein measured 12 months following the final injection. RESULTS: From April 2017 to December 2018, a total of 5002 volunteers were screened and 4789 enrolled. Participants were enrolled at 6 sites in four countries (Guinea, Liberia, Sierra Leone, and Mali). Of the 4789 participants, 2560 (53%) were adults and 2229 (47%) were children. Those < 18 years of age included 549 (12%) aged 1 to 4 years, 750 (16%) 5 to 11 years, and 930 (19%) aged 12-17 years. At baseline, the median (25th, 75th percentile) antibody titer to Ebola virus glycoprotein for 1090 participants was 72 (50, 116) EU/mL. DISCUSSION: The PREVAC trial is evaluating-placebo-controlled-two promising Ebola candidate vaccines in advanced stages of development. The results will address unanswered questions related to short- and long-term safety and immunogenicity for three vaccine strategies in adults and children. TRIAL REGISTRATION: ClinicalTrials.gov NCT02876328 . Registered on 23 August 2016.


Subject(s)
Ebola Vaccines , Hemorrhagic Fever, Ebola , Adult , Africa, Western , Child , Child, Preschool , Clinical Trials, Phase II as Topic , Double-Blind Method , Ebola Vaccines/adverse effects , Healthy Volunteers , Hemorrhagic Fever, Ebola/prevention & control , Humans , Infant , Randomized Controlled Trials as Topic , Vaccination
18.
Lancet Infect Dis ; 21(4): 493-506, 2021 04.
Article in English | MEDLINE | ID: mdl-33217361

ABSTRACT

BACKGROUND: To address the unmet medical need for an effective prophylactic vaccine against Ebola virus we assessed the safety and immunogenicity of three different two-dose heterologous vaccination regimens with a replication-deficient adenovirus type 26 vector-based vaccine (Ad26.ZEBOV), expressing Zaire Ebola virus glycoprotein, and a non-replicating, recombinant, modified vaccinia Ankara (MVA) vector-based vaccine, encoding glycoproteins from Zaire Ebola virus, Sudan virus, and Marburg virus, and nucleoprotein from the Tai Forest virus. METHODS: This randomised, observer-blind, placebo-controlled, phase 2 trial was done at seven hospitals in France and two research centres in the UK. Healthy adults (aged 18-65 years) with no history of Ebola vaccination were enrolled into four cohorts. Participants in cohorts I-III were randomly assigned (1:1:1) using computer-generated randomisation codes into three parallel groups (randomisation for cohorts II and III was stratified by country and age), in which participants were to receive an intramuscular injection of Ad26.ZEBOV on day 1, followed by intramuscular injection of MVA-BN-Filo at either 28 days (28-day interval group), 56 days (56-day interval group), or 84 days (84-day interval group) after the first vaccine. Within these three groups, participants in cohort II (14:1) and cohort III (10:3) were further randomly assigned to receive either Ad26.ZEBOV or placebo on day 1, followed by either MVA-BN-Filo or placebo on days 28, 56, or 84. Participants in cohort IV were randomly assigned (5:1) to receive one dose of either Ad26.ZEBOV or placebo on day 1 for vector shedding assessments. For cohorts II and III, study site personnel, sponsor personnel, and participants were masked to vaccine allocation until all participants in these cohorts had completed the post-MVA-BN-Filo vaccination visit at 6 months or had discontinued the trial, whereas cohort I was open-label. For cohort IV, study site personnel and participants were masked to vaccine allocation until all participants in this cohort had completed the post-vaccination visit at 28 days or had discontinued the trial. The primary outcome, analysed in all participants who had received at least one dose of vaccine or placebo (full analysis set), was the safety and tolerability of the three vaccination regimens, as assessed by participant-reported solicited local and systemic adverse events within 7 days of receiving both vaccines, unsolicited adverse events within 42 days of receiving the MVA-BN-Filo vaccine, and serious adverse events over 365 days of follow-up. The secondary outcome was humoral immunogenicity, as measured by the concentration of Ebola virus glycoprotein-binding antibodies at 21 days after receiving the MVA-BN-Filo vaccine. The secondary outcome was assessed in the per-protocol analysis set. This study is registered at ClinicalTrials.gov, NCT02416453, and EudraCT, 2015-000596-27. FINDINGS: Between June 23, 2015, and April 27, 2016, 423 participants were enrolled: 408 in cohorts I-III were randomly assigned to the 28-day interval group (123 to receive Ad26.ZEBOV and MVA-BN-Filo, and 13 to receive placebo), the 56-day interval group (124 to receive Ad26.ZEBOV and MVA-BN-Filo, and 13 to receive placebo), and the 84-day interval group (117 to receive Ad26.ZEBOV and MVA-BN-Filo, and 18 to receive placebo), and 15 participants in cohort IV were assigned to receive Ad26.ZEBOV and MVA-BN-Filo (n=13) or to receive placebo (n=2). 421 (99·5%) participants received at least one dose of vaccine or placebo. The trial was temporarily suspended after two serious neurological adverse events were reported, one of which was considered as possibly related to vaccination, and per-protocol vaccination was disrupted for some participants. Vaccinations were generally well tolerated. Mild or moderate local adverse events (mostly pain) were reported after 206 (62%) of 332 Ad26.ZEBOV vaccinations, 136 (58%) of 236 MVA-BN-Filo vaccinations, and 11 (15%) of 72 placebo injections. Systemic adverse events were reported after 255 (77%) Ad26.ZEBOV vaccinations, 116 (49%) MVA-BN-Filo vaccinations, and 33 (46%) placebo injections, and included mostly mild or moderate fatigue, headache, or myalgia. Unsolicited adverse events occurred after 115 (35%) of 332 Ad26.ZEBOV vaccinations, 81 (34%) of 236 MVA-BN-Filo vaccinations, and 24 (33%) of 72 placebo injections. At 21 days after receiving the MVA-BN-Filo vaccine, geometric mean concentrations of Ebola virus glycoprotein-binding antibodies were 4627 ELISA units (EU)/mL (95% CI 3649-5867) in the 28-day interval group, 10 131 EU/mL (8554-11 999) in the 56-day interval group, and 11 312 mL (9072-14106) in the 84-day interval group, with antibody concentrations persisting at 1149-1205 EU/mL up to day 365. INTERPRETATION: The two-dose heterologous regimen with Ad26.ZEBOV and MVA-BN-Filo was safe, well tolerated, and immunogenic, with humoral and cellular immune responses persisting for 1 year after vaccination. Taken together, these data support the intended prophylactic indication for the vaccine regimen. FUNDING: Innovative Medicines Initiative and Janssen Vaccines & Prevention BV. TRANSLATION: For the French translation of the abstract see Supplementary Materials section.


Subject(s)
Ebola Vaccines/adverse effects , Ebolavirus/immunology , Hemorrhagic Fever, Ebola/prevention & control , Immunization Schedule , Immunogenicity, Vaccine , Adolescent , Adult , Aged , Antibodies, Viral/blood , Antibodies, Viral/immunology , Cohort Studies , Ebola Vaccines/administration & dosage , Ebola Vaccines/genetics , Ebola Vaccines/immunology , Female , France , Glycoproteins/genetics , Glycoproteins/immunology , Hemorrhagic Fever, Ebola/immunology , Hemorrhagic Fever, Ebola/virology , Humans , Injections, Intramuscular , Male , Middle Aged , Placebos/administration & dosage , Placebos/adverse effects , United Kingdom , Vaccines, Synthetic/administration & dosage , Vaccines, Synthetic/adverse effects , Vaccines, Synthetic/genetics , Vaccines, Synthetic/immunology , Viral Proteins/genetics , Viral Proteins/immunology , Young Adult
20.
Front Immunol ; 11: 568927, 2020.
Article in English | MEDLINE | ID: mdl-33335526

ABSTRACT

NK cells are phenotypically and functionally diverse lymphocytes due to variegated expression of a large array of receptors. NK-cell activity is tightly regulated through integration of receptor-derived inhibitory and activating signals. Thus, the receptor profile of each NK cell ultimately determines its ability to sense aberrant cells and subsequently mediate anti-viral or anti-tumor responses. However, an in-depth understanding of how different receptor repertoires enable distinct immune functions of NK cells is lacking. Therefore, we investigated the phenotypic diversity of primary human NK cells by performing extensive phenotypic characterization of 338 surface molecules using flow cytometry (n = 18). Our results showed that NK cells express at least 146 receptors on their surface. Of those, 136 (>90%) exhibited considerable inter-donor variability. Moreover, comparative analysis of CD56bright and CD56dim NK cells identified 70 molecules with differential expression between the two major NK-cell subsets and allowed discrimination of these subsets via unsupervised hierarchical clustering. These receptors were associated with a broad range of NK-cell functions and multiple molecules were not previously associated with predominant expression on either subset (e.g. CD82 and CD147). Altogether, our study contributes to an improved understanding of the phenotypic diversity of NK cells and its potential functional implications on a cellular and population level. While the identified distinct signatures in the receptor repertoires provide a molecular basis for the differential immune functions exerted by CD56bright and CD56dim NK cells, the observed inter-individual differences in the receptor repertoire of NK cells may contribute to a diverging ability to control certain diseases.


Subject(s)
CD56 Antigen/immunology , Killer Cells, Natural/immunology , Humans , Phenotype
SELECTION OF CITATIONS
SEARCH DETAIL
...