Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 54
Filter
Add more filters










Publication year range
1.
Microbiol Spectr ; 12(5): e0000624, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38619253

ABSTRACT

Mycobacterium abscessus is increasingly recognized as an emerging opportunistic pathogen causing severe lung diseases and cutaneous infections. However, treatment of M. abscessus infections remains particularly challenging, largely due to intrinsic resistance to a wide panel of antimicrobial agents. New therapeutic alternatives are urgently needed. Herein, we show that, upon limited irradiation with a blue-light source, newly developed porphyrin-peptide cage-type photosensitizers exert a strong bactericidal activity against smooth and rough variants of M. abscessus in planktonic cultures and in biofilms, at low concentrations. Atomic force microscopy unraveled important morphological alterations that include a wrinkled and irregular bacterial surface. The potential of these compounds for a photo-therapeutic use to treat M. abscessus skin infections requires further evaluations.IMPORTANCEMycobacterium abscessus causes persistent infections and is extremely difficult to eradicate. Despite intensive chemotherapy, treatment success rates remain very low. Thus, given the unsatisfactory performances of the current regimens, more effective therapeutic alternatives are needed. In this study, we evaluated the activity of newly described porphyrin-peptide cage-type conjugates in the context of photodynamic therapy. We show that upon light irradiation, these compounds were highly bactericidal against M. abscessus in vitro, thus qualifying these compounds for future studies dedicated to photo-therapeutic applications against M. abscessus skin infections.


Subject(s)
Anti-Bacterial Agents , Biofilms , Microbial Sensitivity Tests , Mycobacterium Infections, Nontuberculous , Mycobacterium abscessus , Photosensitizing Agents , Porphyrins , Mycobacterium abscessus/drug effects , Porphyrins/pharmacology , Porphyrins/chemistry , Photosensitizing Agents/pharmacology , Photosensitizing Agents/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Biofilms/drug effects , Humans , Mycobacterium Infections, Nontuberculous/microbiology , Mycobacterium Infections, Nontuberculous/drug therapy , Peptides/pharmacology , Peptides/chemistry , Photochemotherapy/methods , Light
2.
Org Biomol Chem ; 22(7): 1484-1494, 2024 02 14.
Article in English | MEDLINE | ID: mdl-38289387

ABSTRACT

The development of photodynamic therapy requires access to smart photosensitizers which combine appropriate photophysical and biological properties. Interestingly, supramolecular and dynamic covalent chemistries have recently shown their ability to produce novel architectures and responsive systems through simple self-assembly approaches. Herein, we report the straightforward formation of porphyrin-peptide conjugates and cage compounds which feature on their surface chemical groups promoting cell uptake and specific organelle targeting. We show that they self-assemble, in aqueous media, into positively-charged nanoparticles which generate singlet oxygen upon green light irradiation, while also undergoing a chemically-controlled disassembly due to the presence of reversible covalent linkages. Finally, the biological evaluation in cells revealed that they act as effective photosensitizers and promote synergistic effects in combination with Doxorubicin.


Subject(s)
Nanoparticles , Photochemotherapy , Porphyrins , Porphyrins/pharmacology , Porphyrins/chemistry , Photosensitizing Agents/chemistry , Singlet Oxygen , Nanoparticles/chemistry , Peptides/pharmacology
3.
Expert Opin Ther Targets ; 27(9): 817-826, 2023.
Article in English | MEDLINE | ID: mdl-37668158

ABSTRACT

INTRODUCTION: Photodynamic therapy (PDT) is a reactive oxygen species (ROS)-dependent treatment modality which has emerged as an alternative cancer therapy strategy. However, in solid tumors, the therapeutic efficacy of PDT is strongly reduced by hypoxia, a typical feature of many such tumors. The tumor-associated carbonic anhydrases IX (hCA IX) and XII (hCA XII), which are overexpressed under hypoxia are attractive, validated anticancer drug targets in solid tumors. Current challenges in therapeutic design of effective PDT systems aim to overcome the limitation of hypoxia by developing synergistic CA-targeted therapies combining photosensitizers and hCA IX/XII inhibitors. AREA COVERED: In this review, the current literature on the use of hCA IX/XII inhibitors (CAi) for targeting photosensitizing chemical systems useful for PDT against hypoxic solid tumors is summarized, along with recent progress, challenges, and future prospects. EXPERT OPINION: hCA IX/XII-focused photosensitizers have recently provided new generation of compounds of considerable potential. Proof of concept of in vivo efficacy studies suggested enhanced efficacy for CAi-PDT hybrid systems. Further research is needed to deepen our understanding of how hCA IX/hCA XII inhibition can enhance PDT and for obtaining more effective such derivatives.

4.
Int J Mol Sci ; 24(10)2023 May 13.
Article in English | MEDLINE | ID: mdl-37240061

ABSTRACT

Three new tetraphenylethene (TPE) push-pull chromophores exhibiting strong intramolecular charge transfer (ICT) are described. They were obtained via [2 + 2] cycloaddition-retroelectrocyclization (CA-RE) click reactions on an electron-rich alkyne-tetrafunctionalized TPE (TPE-alkyne) using both 1,1,2,2-tetracyanoethene (TCNE), 7,7,8,8-tetracyanoquinodimethane (TCNQ) and 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F4-TCNQ) as electron-deficient alkenes. Only the starting TPE-alkyne displayed significant AIE behavior, whereas for TPE-TCNE, a faint effect was observed, and for TPE-TCNQ and TPE-F4-TCNQ, no fluorescence was observed in any conditions. The main ICT bands that dominate the UV-Visible absorption spectra underwent a pronounced red-shift beyond the near-infrared (NIR) region for TPE-F4-TCNQ. Based on TD-DFT calculations, it was shown that the ICT character shown by the compounds exclusively originated from the clicked moieties independently of the nature of the central molecular platform. Photothermal (PT) studies conducted on both TPE-TCNQ and TPE-F4-TCNQ in the solid state revealed excellent properties, especially for TPE-F4-TCNQ. These results indicated that CA-RE reaction of TCNQ or F4-TCNQ with donor-substituted are promising candidates for PT applications.


Subject(s)
Alkynes , Nitriles , Cycloaddition Reaction
5.
Chem Commun (Camb) ; 58(95): 13270-13273, 2022 Nov 29.
Article in English | MEDLINE | ID: mdl-36373377

ABSTRACT

Electronic and steric properties of NHC ligands functionalized with porphyrins were investigated. When porphyrins are used as NHC-wingtips, nickel(II) in the macrocyle significantly improves the catalytic activity of the neighbouring NHC-Rh(I) complex in the conjugate addition of phenylboronic acid to cyclohexen-2-one.


Subject(s)
Heterocyclic Compounds , Porphyrins , Rhodium , Electronics
6.
Molecules ; 27(19)2022 Oct 06.
Article in English | MEDLINE | ID: mdl-36235185

ABSTRACT

Dynamic covalent polymers (DCPs) offer opportunities as adaptive materials of particular interest for targeting, sensing and delivery of biological molecules. In this view, combining cationic units and fluorescent units along DCP chains is attractive for achieving optical probes for the recognition and delivery of nucleic acids. Here, we report on the design of acylhydrazone-based DCPs combining cationic arginine units with π-conjugated fluorescent moieties based on thiophene-ethynyl-fluorene cores. Two types of fluorescent building blocks bearing neutral or cationic side groups on the fluorene moiety are considered in order to assess the role of the number of cationic units on complexation with DNA. The (chir)optical properties of the building blocks, the DCPs, and their complexes with several types of DNA are explored, providing details on the formation of supramolecular complexes and on their stability in aqueous solutions. The DNA-templated formation of DCPs is demonstrated, which provides new perspectives on the assembly of fluorescent DCP based on the nucleic acid structure.


Subject(s)
Polymers , Smart Materials , Arginine , Cations/chemistry , DNA/chemistry , Fluorenes , Polymers/chemistry , Thiophenes/chemistry
7.
Org Biomol Chem ; 20(42): 8217-8222, 2022 Nov 02.
Article in English | MEDLINE | ID: mdl-36043857

ABSTRACT

5,15-Diazaporphyrin appended with D-mannose moieties was prepared through Suzuki-Miyaura cross-coupling reaction and SN2 alkylation. The resultant diazaporphyrin was hydrophilic enough to exhibit sufficient solubility in aqueous media. Because of the photosensitizing ability of diazaporphyrins, the in vitro activity of the D-mannose-appended diazaporphyrin in photodynamic therapy (PDT) was investigated. The specific internalization of the functionalized diazaporphyrin into human breast adenocarcinoma (MDA-MB-231) cells through mannose receptors was confirmed by confocal microscopy imaging. We also demonstrated the strong PDT activity of the functionalized diazaporphyrin at a nanomolar level with short light irradiation time.


Subject(s)
Breast Neoplasms , Photochemotherapy , Humans , Female , Photochemotherapy/methods , Mannose , Photosensitizing Agents/pharmacology , Photosensitizing Agents/therapeutic use , Breast Neoplasms/drug therapy , Cell Line, Tumor
8.
Molecules ; 27(13)2022 Jun 23.
Article in English | MEDLINE | ID: mdl-35807296

ABSTRACT

The photophysical properties of two classes of porphyrins and metalloporphyrins linked to N-heterocyclic carbene (NHC) Au(I) complexes have been investigated by means of density functional theory and its time-dependent extension for their potential application in photodynamic therapy. For this purpose, the absorption spectra, the singlet-triplet energy gaps, and the spin-orbit coupling (SOC) constants have been determined. The obtained results show that all the studied compounds possess the appropriate properties to generate cytotoxic singlet molecular oxygen, and consequently, they can be employed as photosensitizers in photodynamic therapy. Nevertheless, on the basis of the computed SOCs and the analysis of the metal contribution to the involved molecular orbitals, a different influence in terms of the heavy atom effect in promoting the intersystem crossing process has been found as a function of the identity of the metal center and its position in the center of the porphyrin core or linked to the peripheral NHC.


Subject(s)
Metalloporphyrins , Photochemotherapy , Porphyrins , Gold , Metalloporphyrins/therapeutic use , Methane/analogs & derivatives , Photochemotherapy/methods , Singlet Oxygen
9.
Inorg Chem ; 60(24): 19009-19021, 2021 Dec 20.
Article in English | MEDLINE | ID: mdl-34878781

ABSTRACT

Four porphyrins equipped with imidazolium rings on the para positions of their meso aryl groups were prepared and used as tetrakis(N-heterocyclic carbene) (NHC) precursors for the synthesis of porphyrin cages assembled from eight NHC-M bonds (M = Ag+ or Au+). The conformation of the obtained porphyrin cages in solution and their encapsulation properties strongly depend on the structure of the spacer -(CH2)n- (n = 0 or 1) between meso aryl groups and peripheral NHC ligands. In the absence of methylene groups (n = 0), porphyrin cages are rather rigid and the short porphyrin-porphyrin distance prevents the encapsulation of guest molecules like 1,4-diazabicyclo[2.2.2]octane (DABCO). By contrast, the presence of methylene functions (n = 1) between meso aryl groups and peripheral NHCs offers additional flexibility to the system, allowing the inner space between the two porphyrins to expand enough to encapsulate guest molecules like water molecules or DABCO. The peripheral NHC-wingtip groups also play a significant role in the encapsulation properties of the porphyrin cages.

10.
ACS Appl Mater Interfaces ; 13(25): 29325-29339, 2021 Jun 30.
Article in English | MEDLINE | ID: mdl-34138540

ABSTRACT

We report periodic mesoporous ionosilica nanoparticles (PMINPs) as versatile nano-objects for imaging, photodynamic therapy (PDT), and efficient adsorption and delivery of small interfering RNA (siRNA) into breast cancer cells. In order to endow these nanoparticles with PDT and siRNA photochemical internalization (PCI) properties, a porphyrin derivative was integrated into the ionosilica framework. For this purpose, we synthesized PMINPs via hydrolysis-cocondensation procedures from oligosilylated ammonium and porphyrin precursors. The formation of these nano-objects was proved by transmission electron microscopy. The formed nanoparticles were then thoroughly characterized via solid-state NMR, nitrogen sorption, dynamic light scattering, and UV-vis and fluorescence spectroscopies. Our results indicate the formation of highly porous nanorods with a length of 108 ± 9 nm and a width of 54 ± 4 nm. A significant PDT effect of type I mechanism (95 ± 2.8% of cell death) was observed upon green light irradiation in nanoparticle-treated breast cancer cells, while the blue light irradiation caused a significant phototoxic effect in non-treated cells. Furthermore, PMINPs formed stable complexes with siRNA (up to 24 h), which were efficiently internalized into the cells after 4 h of incubation mostly with the energy-dependent endocytosis process. The PCI effect was obvious with green light irradiation and successfully led to 83 ± 1.1% silencing of the luciferase gene in luciferase-expressing breast cancer cells, while no gene silencing effect was observed with blue light irradiation. The present work highlights the high potential of porphyrin-doped PMINPs as multifunctional nanocarriers for nucleic acids, such as siRNA, with a triple ability to perform imaging, PDT, and PCI.


Subject(s)
Nanoparticles/chemistry , Photochemotherapy , Photosensitizing Agents/chemistry , RNA, Small Interfering/chemistry , Silicon Dioxide/chemistry , Cells, Cultured , Gene Silencing , Human Umbilical Vein Endothelial Cells , Humans , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism
11.
Chemphyschem ; 21(23): 2543-2552, 2020 12 02.
Article in English | MEDLINE | ID: mdl-32910539

ABSTRACT

Water-soluble π-conjugated polymers are increasingly considered for DNA biosensing. However, the conformational rearrangement, supramolecular organization and dynamics upon interaction with DNA have been overlooked, which prevents the rational design of such detection tools. To elucidate the binding of a cationic polythiophene (CPT) to DNA with atomistic resolution, we performed molecular simulations of their supramolecular assembly. Comparison of replicated simulations show a multiplicity of CPT binding geometries that contribute to the wrapping of CPT around DNA. The different binding geometries are stabilized by both electrostatic interactions between CPT lateral cations and DNA phosphodiesters and van der Waals interactions between the CPT backbone and the DNA grooves. Simulated circular dichroism (CD) spectra show that the induced CD signal stems from a conserved geometrical feature across the replicated simulations, i. e. the presence of segments of syn configurations between thiophene units along the CPT chain. At the macromolecular scale, we inspected the different shapes related to the CPT binding modes around the DNA through symmetry metrics. Altogether, molecular dynamics (MD) simulations, model Hamiltonian calculations of the CD spectra, and symmetry indices provide insights into the origin of induced chirality from the atomic to the macromolecular scale. Our multidisciplinary approach points out the hierarchical aspect of CPT chiral organization induced by DNA.


Subject(s)
DNA/chemistry , Polymers/chemistry , Thiophenes/chemistry , Binding Sites , Cations/chemistry , Macromolecular Substances/chemistry , Molecular Dynamics Simulation
12.
Nanomaterials (Basel) ; 10(8)2020 Jul 22.
Article in English | MEDLINE | ID: mdl-32708042

ABSTRACT

In this work, we exploit the versatile function of cationic phosphonium-conjugated polythiophenes to develop multifunctional platforms for imaging and combined therapy (siRNA delivery and photodynamic therapy). The photophysical properties (absorption, emission and light-induced generation of singlet oxygen) of these cationic polythiophenes were found to be sensitive to molecular weight. Upon light irradiation, low molecular weight cationic polythiophenes were able to light-sensitize surrounding oxygen into reactive oxygen species (ROS) while the highest were not due to its aggregation in aqueous media. These polymers are also fluorescent, allowing one to visualize their intracellular location through confocal microscopy. The most promising polymers were then used as vectors for siRNA delivery. Due to their cationic and amphipathic features, these polymers were found to effectively self-assemble with siRNA targeting the luciferase gene and deliver it in MDA-MB-231 cancer cells expressing luciferase, leading to 30-50% of the gene-silencing effect. In parallel, the photodynamic therapy (PDT) activity of these cationic polymers was restored after siRNA delivery, demonstrating their potential for combined PDT and gene therapy.

13.
Dalton Trans ; 49(21): 7005-7014, 2020 Jun 07.
Article in English | MEDLINE | ID: mdl-32186566

ABSTRACT

Janus bis(N-heterocyclic carbenes) composed of a porphyrin core with two N-heterocyclic carbene (NHC) heads fused to opposite pyrroles were used as bridging ligands for the preparation of metal complexes. We first focused our attention on the synthesis of gold(i) chloride complexes [(NHC)AuCl] and investigated the substitution of the chloride ligand by acetylides to obtain the corresponding [(NHC)AuC[triple bond, length as m-dash]CR] complexes. Polyacetylides were then used to obtain molecular multiporphyrinic systems with porphyrins fused to only one NHC ligand, while main-chain organometallic polymers (MCOPs) were obtained when using Janus porphyrin bis(NHCs). Interestingly, MCOPs incorporating zinc(ii) porphyrins proved to be efficient as heterogeneous photocatalysts for the generation of singlet oxygen upon visible light irradiation.

14.
Molecules ; 25(1)2020 Jan 03.
Article in English | MEDLINE | ID: mdl-31947792

ABSTRACT

Chlorophyll a derivatives were integrated in "all solid-state" dye sensitized solar cells (DSSCs) with a mesoporous TiO2 electrode and 2',2',7,7'-tetrakis[N,N-di(4-methoxyphenyl)amino]-9,9'-spirobifluorene as the hole-transport material. Despite modest power conversion efficiencies (PCEs) between 0.26% and 0.55% achieved for these chlorin dyes, a systematic investigation was carried out in order to elucidate their main limitations. To provide a comprehensive understanding of the parameters (structure, nature of the anchoring group, adsorption …) and their relationship with the PCEs, density functional theory (DFT) calculations, optical and photovoltaic studies and electron paramagnetic resonance analysis exploiting the 4-carboxy-TEMPO spin probe were combined. The recombination kinetics, the frontier molecular orbitals of these DSSCs and the adsorption efficiency onto the TiO2 surface were found to be the key parameters that govern their photovoltaic response.


Subject(s)
Chlorophyll/chemistry , Solar Energy , Titanium/chemistry , Porosity
15.
Front Chem ; 7: 493, 2019.
Article in English | MEDLINE | ID: mdl-31355185

ABSTRACT

Guanine-quadruplexes (G4s) are targets for anticancer therapeutics. In this context, human telomeric DNA (HT-DNA) that can fold into G4s sequences are of particular interest, and their stabilization with small molecules through a visualizable process has become a challenge. As a new type of ligand for HT-G4, we designed a tetraimidazolium tetraphenylethene (TPE-Im) as a water-soluble light-up G4 probe. We study its G4-binding properties with HT-DNA by UV-Visible absorption, circular dichroism and fluorescence spectroscopies, which provide insights into the interactions between TPE-Im and G4-DNA. Remarkably, TPE-Im shows a strong fluorescence enhancement and large shifts upon binding to G4, which is valuable for detecting G4s. The association constants for the TPE-Im/G4 complex were evaluated in different solution conditions via isothermal titration calorimetry (ITC), and its binding modes were explored by molecular modeling showing a groove-binding mechanism. The stabilization of G4 by TPE-Im has been assessed by Fluorescence Resonance Energy Transfer (FRET) melting assays, which show a strong stabilization (ΔT 1/2 around +20°C), together with a specificity toward G4 with respect to double-stranded DNA.

16.
ACS Appl Bio Mater ; 2(5): 2125-2136, 2019 May 20.
Article in English | MEDLINE | ID: mdl-35030651

ABSTRACT

Water-soluble π-conjugated polymers are increasingly envisioned in biosensors, in which their unique optical and electronic properties permit a highly sensitive detection of biomolecular targets. In particular, cationic π-conjugated polymers are attractive for DNA sensing technologies, through the use of the fluorescence signals either in physiological solutions or in thin films. However, in the context of enzymatic activity assays, fluorescence-based methods require covalently labeling DNA with a dye or an antibody and are limited to short time scale due to dye photobleaching. In this frame, we report here a novel possible approach to probe the cleavage of DNA by a restriction enzyme, in continuous and without covalently labeled DNA substrate. This is achieved by exploiting unique chiroptical signals arising from the chiral induction of DNA to a poly[3-(6'-(trimethylphosphonium)hexyl)thiophene-2,5-diyl] upon interaction. The cleavage of DNA by HpaI, an endonuclease enzyme, is monitored through circular dichroism (CD) signals in the spectral range where the polymer absorbs light, i.e., far away from the spectral ranges of both DNA and the enzyme. We compare the results to a conventional noncontinuous assay by polyacrylamide gel electrophoresis, and we demonstrate that induced CD signals are effective in probing the enzymatic activity. By means of molecular dynamics simulations and calculations of CD spectra, we bring molecular insights into the structure of DNA/polymer supramolecular complexes before and after the cleavage of DNA. We show that the cleavage of DNA modifies the dynamics and the organization of the polymer backbone induced by the DNA helix. Altogether, our results provide detailed spectroscopic and structural insights into the enzymatic cleavage of DNA in interaction with a π-conjugated polymer, which could be helpful for developing chiroptical detection tools to monitor the catalytic activity in real time.

18.
Molecules ; 23(10)2018 Sep 30.
Article in English | MEDLINE | ID: mdl-30274343

ABSTRACT

A new layered hybrid polythiophene-silica material was obtained directly by hydrolysis and polycondensation (sol-gel) of a silylated-thiophene bifunctional precursor, and its subsequent oxidative polymerization by FeCl3. This precursor was judiciously designed to guarantee its self-assembly and the formation of a lamellar polymer-silica structure, exploiting the cooperative effect between the hydrogen bonding interactions, originating from the ureido groups and the π-stacking interactions between the thiophene units. The lamellar structure of the polythiophene-silica composite was confirmed by X-ray powder diffraction (XRD) and transmission electron microscopy (TEM) analyses. The solid-state nuclear magnetic resonance (NMR), UV-Vis, and photoluminescence spectra unambiguously indicate the incorporation of polythiophene into the silica matrix. Our work demonstrates that using a polymerizable silylated-thiophene precursor is an efficient approach towards the formation of nanostructured conjugated polymer-based hybrid materials.


Subject(s)
Polymerization , Polymers/chemistry , Silicon Dioxide/chemistry , Thiophenes/chemistry , Oxidation-Reduction
19.
Chem Commun (Camb) ; 54(69): 9603-9606, 2018 Aug 23.
Article in English | MEDLINE | ID: mdl-30094440

ABSTRACT

A porphyrin bearing four imidazolium rings on the meso positions was used as an N-heterocyclic carbene (NHC) precursor for the synthesis of porphyrin dimers with face-to-face orientations. The porphyrins are connected through the formation of eight M-CNHC bonds, with M = AgI or AuI.

20.
Photochem Photobiol Sci ; 17(11): 1651-1674, 2018 Nov 01.
Article in English | MEDLINE | ID: mdl-30022180

ABSTRACT

In this review, the use of mesoporous silica nanoparticles for photodynamic therapy (PDT) applications is described for the year 2017. Since the pioneering work in 2009, nanosystems involving mesoporous silica nanoparticles have gained in complexity with a sophisticated core-shell system able to perform multi-imaging and multi-therapies, not only for cancer diseases but also for anti-microbial therapy, atherosclerosis, or Alzheimer disease. Near-infrared, excitation light based on up-converting systems, X-rays or persistent luminescent systems are described for deeper tissue treatments.


Subject(s)
Nanoparticles/chemistry , Neoplasms/drug therapy , Photochemotherapy , Photosensitizing Agents/pharmacology , Silicon Dioxide/pharmacology , Alzheimer Disease/drug therapy , Atherosclerosis/drug therapy , Bacteria/drug effects , Particle Size , Photosensitizing Agents/chemistry , Porosity , Silicon Dioxide/chemistry , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL
...