Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 13(1): 12822, 2023 08 07.
Article in English | MEDLINE | ID: mdl-37550398

ABSTRACT

The dosage of colistin for the treatment of enteric E. coli in animals necessitates considering the heteroresistant (HR) nature of the targeted inoculum, described by the presence of a major susceptible population (S1, representing 99.95% of total population) mixed with an initial minor subpopulation of less susceptible bacteria (S2). Herein, we report the 1-compartment population pharmacokinetics (PK) of colistin in chicken intestine (jejunum and ileum) and combined it with a previously established pharmacodynamic (PD) model of HR in E. coli. We then computed probabilities of target attainment (PTA) with a pharmacodynamic target (AUC24h/MIC) that achieves 50% of the maximal kill of bacterial populations (considering inoculums of pure S1, S2 or HR mixture of S1 + S2). For an MIC of 1 mg/L, PTA > 95% was achieved with the registered dose (75,000 IU/kg BW/day in drinking water) for the HR mixture of S1 + S2 E. coli, whether they harboured mcr or not. For an MIC of 2 mg/L (ECOFF), we predicted PTA > 90% against the dominant susceptible sub-population (S1) with this clinical dose given (i) over 24 h for mcr-negative isolates or (ii) over 6 h for mcr-positive isolates (pulse dosing). Colistin clinical breakpoint S ≤ 2 mg/L (EUCAST rules) should be confirmed clinically.


Subject(s)
Anti-Bacterial Agents , Colistin , Animals , Colistin/therapeutic use , Anti-Bacterial Agents/therapeutic use , Chickens , Escherichia coli , Microbial Sensitivity Tests
2.
Antimicrob Agents Chemother ; 66(9): e0079322, 2022 09 20.
Article in English | MEDLINE | ID: mdl-36040146

ABSTRACT

Heteroresistance corresponds to the presence, in a bacterial isolate, of an initial small subpopulation of bacteria characterized by a significant reduction in their sensitivity to a given antibiotic. Mechanisms of heteroresistance versus resistance are poorly understood. The aim of this study was to explore heteroresistance in mcr-positive and mcr-negative Escherichia coli strains exposed to colistin by use of modeling killing curves with a semimechanistic model. We quantify, for a range of phenotypically (susceptibility based on MIC) and genotypically (carriage of mcr-1 or mcr-3 or mcr-negative) different bacteria, a maximum killing rate (Emax) of colistin and the corresponding potency (EC50), i.e., the colistin concentrations corresponding to Emax/2. Heteroresistant subpopulations were identified in both mcr-negative and mcr-positive E. coli as around 0.06% of the starting population. Minority heteroresistant bacteria, both for mcr-negative and mcr-positive strains, differed from the corresponding dominant populations only by the maximum killing rate of colistin (differences for Emax by a factor of 12.66 and 3.76 for mcr-negative and mcr-positive strains, respectively) and without alteration of their EC50s. On the other hand, the resistant mcr-positive strains are distinguished from the mcr-negative strains by differences in their EC50, which can reach a factor of 44 for their dominant population and 22 for their heteroresistant subpopulations. It is suggested that the underlying physiological mechanisms differ between resistance and heteroresistance, with resistance being linked to a decrease in the affinity of colistin for its site of action, whereas heteroresistance would, rather, be linked to an alteration of the target, which will be more difficult to be further changed or destroyed.


Subject(s)
Colistin , Escherichia coli Proteins , Anti-Bacterial Agents/pharmacology , Colistin/pharmacology , Drug Resistance, Bacterial/genetics , Escherichia coli , Escherichia coli Proteins/genetics , Microbial Sensitivity Tests , Plasmids
3.
Antibiotics (Basel) ; 11(5)2022 May 07.
Article in English | MEDLINE | ID: mdl-35625275

ABSTRACT

Colistin has been used for the treatment of non-invasive gastrointestinal infections caused by avian pathogenic E. coli (APEC). The discovery of mobilised colistin resistance (mcr) in E. coli has instigated a One Health approach to minimise colistin use and the spread of resistance. The aim of this study was to compare colistin susceptibility of APECs (collected from Denmark n = 25 and France n = 39) versus commensal E. coli (collected from the Netherlands n = 51 and the UK n = 60), alongside genetic (mcr-1−5) and phenotypic resistance against six other antimicrobial classes (aminoglycosides, cephalosporins, fluoroquinolones, penicillins, sulphonamides/trimethoprim, tetracyclines). Minimum inhibitory concentration (MIC) values were determined using a broth microdilution method (EUCAST guidelines), and phenotypic resistance was determined using disk diffusion. Colistin MIC values of APEC were significantly lower than those for commensals by 1 dilution (p < 0.0001, Anderson-Darling test), and differences in distributions were observed between countries. No isolate carried mcr-1−5. Three phenotypically resistant isolates were identified in 2/62 APEC and 1/111 commensal isolates. Gentamicin or gentamicin−ceftriaxone co-resistance was observed in two of these isolates. This study showed a low prevalence of phenotypic colistin resistance, with no apparent difference in colistin resistance between commensal E. coli strains and APEC strains.

4.
J Vet Pharmacol Ther ; 44(6): 982-985, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34614207

ABSTRACT

Justification for continued use of colistin in veterinary medicine, for example medicated water, relies on pharmacokinetic/pharmacodynamic (PK/PD) studies that require accurate measurement of colistin content in the digestive tract. A method for the detection and quantification of colistin in poultry intestinal material was developed and validated. Colistin is not absorbed after oral administration, and the biophase is the gastrointestinal tract. Extraction of colistin from the matrix was achieved using solid-phase extraction with a methanol:water (1:2; v/v) solution. Polymyxin B was used as an internal standard. Colistin A and colistin B, the main components of colistin, were separated, detected and measured using ultra-high-performance liquid chromatography coupled with tandem mass spectrometry (UHPLC-MS/MS). The method was validated for linearity/quadraticity between 1.1 (LOQ) and 56.7 mg/kg. Mean accuracy was between 82.7% and 107.7% with inter- and intra-day precision lower than 13.3% and 15% respectively. Freeze-thaw, long-term and bench storage were validated. Incurred samples following colistin treatment in poultry at the approved clinical dose of 75,000 IU/kg in drinking water and oral gavage were quantifiable and in line with expected intestinal transit times. The method is considered appropriately accurate and precise for the purposes of pharmacokinetic analysis in the gastrointestinal tract.


Subject(s)
Colistin , Tandem Mass Spectrometry , Animals , Chickens , Chromatography, High Pressure Liquid/veterinary , Solid Phase Extraction/veterinary , Tandem Mass Spectrometry/veterinary
5.
Front Vet Sci ; 8: 698135, 2021.
Article in English | MEDLINE | ID: mdl-34250071

ABSTRACT

Colistin, a last-line antibiotic of major importance in veterinary medicine and of critical importance in human medicine, is authorized to treat gastrointestinal (enteric) infections caused by non-invasive Escherichia coli in multiple veterinary species including poultry. Its use in veterinary medicine has been implicated in the widespread prevalence of mobilized colistin resistance. The objectives of this study were to determine the intestinal content reached in broiler chickens during 72-h treatment with colistin, to evaluate the associated impact on intestinal E. coli density, and to select less susceptible E. coli populations. In this study, 94 broiler chickens were administered a dose of 75,000 IU/kg/day via drinking water. Intestinal samples were collected pre-, during-, and post-dosing. Luminal intestinal content was assessed for colistin content by ultra-high-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS), and E. coli were isolated and enumerated on UriSelect agar™. Minimum inhibitory concentration (MIC, for eight isolates per intestine per animal) was determined, and when higher than the epidemiological cutoff (ECOFF 2 mg/l), isolates were screened for mobilized colistin resistance (mcr)-1 to 5. Colistin content increased during treatment to a maximum of 5.09 mg/kg. During this time, the total population of E. coli showed an almost 1,000-fold reduction. An apparent increase in the relative abundance of E. coli with an MIC ≥ ECOFF, either mcr-negative (6.25-10.94%) or mcr-1-positive (4.16-31.25%) was observed, although this susceptibility shift was not maintained post-treatment. Indeed, following cessation of dosing, colistin was eliminated from the intestine, and content was below the limit of quantification (LOQ, 1.1 mg/kg) within 4 h, and the median MIC of E. coli isolates returned below baseline thereafter. Few isolates with a lower susceptibility (mcr-1-positive or negative) were however observed at the end of the study period, indicating maintained sub-populations in the chicken gut. The results of this study show a limited impact on long-term maintenance of less susceptible E. coli populations as a direct result of colistin treatment in individual birds.

8.
Vet J ; 198(2): 398-403, 2013 Nov.
Article in English | MEDLINE | ID: mdl-23800604

ABSTRACT

Histomoniasis in turkeys can be prevented by administering paromomycin sulfate, an aminoglycoside antimicrobial agent, in feed. The aim of this study was to evaluate the impact of in-feed paromomycin sulfate supplementation on the antimicrobial resistance of intestinal bacteria in turkeys. Twelve flocks of breeder turkeys were administered 100 ppm paromomycin sulfate from hatching to day 120; 12 flocks not supplemented with paromomycin were used as controls. Faecal samples were collected monthly from days 0 to 180. The resistance of Escherichia coli, Enterococcus faecium and Staphylococcus aureus to paramomycin and other antimicrobial agents was compared in paromomycin supplemented (PS) and unsupplemented (PNS) flocks. E. coli from PS birds had a significantly higher frequency of resistance to paromomycin, neomycin and kanamycin until 1 month after the end of supplementation compared to PNS birds. Resistance to amoxicillin or trimethoprim-sulfamethoxazole was also more frequent in PS turkeys. Resistance was mainly due to the presence of aph genes, which could be transmitted by conjugation, sometimes with streptomycin, tetracycline, amoxicillin, trimethoprim or sulfonamide resistance genes. Resistance to kanamycin and streptomycin in E. faecium was significantly different in PS and PNS breeders on days 60 and 90. Significantly higher frequencies of resistance to paromomycin, kanamycin, neomycin and tobramycin were observed in S. aureus isolates from PS birds. Paromomycin supplementation resulted in resistance to aminoglycosides in bacteria of PS turkeys. Co-selection for resistance to other antimicrobial agents was observed in E. coli isolates.


Subject(s)
Anti-Bacterial Agents/pharmacology , Drug Resistance, Bacterial , Escherichia coli Infections/veterinary , Gram-Positive Bacterial Infections/veterinary , Paromomycin/pharmacology , Poultry Diseases/drug therapy , Staphylococcal Infections/veterinary , Turkeys , Animal Feed/analysis , Animals , Anti-Bacterial Agents/administration & dosage , Colony Count, Microbial/veterinary , Diet/veterinary , Dietary Supplements/analysis , Enterococcus faecium/drug effects , Escherichia coli/drug effects , Escherichia coli Infections/drug therapy , Escherichia coli Infections/microbiology , Gram-Positive Bacterial Infections/drug therapy , Gram-Positive Bacterial Infections/microbiology , Microbial Sensitivity Tests/veterinary , Paromomycin/administration & dosage , Poultry Diseases/microbiology , Staphylococcal Infections/drug therapy , Staphylococcal Infections/microbiology , Staphylococcus aureus/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...