Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
J Hered ; 114(4): 410-417, 2023 06 22.
Article in English | MEDLINE | ID: mdl-37195437

ABSTRACT

Genome assemblies are increasingly being used to identify adaptive genetic variation that can help prioritize the population management of protected species. This approach may be particularly relevant to species like Blainville's horned lizard, Phrynosoma blainvillii, due to its specialized diet on noxious harvester ants, numerous adaptative traits for avoiding predation (e.g. cranial horns, dorsoventrally compressed body, cryptic coloration, and blood squirting from the orbital sinuses), and status as Species of Special Concern in California. Rangewide decline since the early 20th century, the basis of its conservation status, has been driven mainly by habitat conversion, over-collecting, and invasion of a non-native ant that displaces its native ant prey base. Here, we report on a scaffold-level genome assembly for P. blainvillii as part of the California Conservation Genomics Project (CCGP), produced using Pacific Biosciences HiFi long reads and Hi-C chromatin-proximity sequencing technology. The de novo assembly has 78 scaffolds, a total length of ~2.21 Gb, a scaffold N50 length of ~352 Mb, and BUSCO score of 97.4%. This is the second species of Phrynosoma for which a reference genome has been assembled and represents a considerable improvement in terms of contiguity and completeness. Combined with the landscape genomics data being compiled by the CCGP, this assembly will help strategize efforts to maintain and/or restore local genetic diversity, where interventions like genetic rescue, translocation, and strategic land preservation may be the only means by which P. blainvillii and other low-vagility species can survive in the fragmented habitats of California.


Subject(s)
Lizards , Animals , Lizards/genetics , Genome , Genomics , Chromosomes , North America
2.
Mol Ecol ; 31(24): 6515-6530, 2022 12.
Article in English | MEDLINE | ID: mdl-36205603

ABSTRACT

Habitat loss, flood control infrastructure, and drought have left most of southern California and northern Baja California's native freshwater fish near extinction, including the endangered unarmoured threespine stickleback (Gasterosteus aculeatus williamsoni). This subspecies, an unusual morph lacking the typical lateral bony plates of the G. aculeatus complex, occurs at arid southern latitudes in the eastern Pacific Ocean and survives in only three inland locations. Managers have lacked molecular data to answer basic questions about the ancestry and genetic distinctiveness of unarmoured populations. These data could be used to prioritize conservation efforts. We sampled G. aculeatus from 36 localities and used microsatellites and whole genome data to place unarmoured populations within the broader evolutionary context of G. aculeatus across southern California/northern Baja California. We identified three genetic groups with none consisting solely of unarmoured populations. Unlike G. aculeatus at northern latitudes, where Pleistocene glaciation has produced similar historical demographic profiles across populations, we found markedly different demographics depending on sampling location, with inland unarmoured populations showing steeper population declines and lower heterozygosity compared to low armoured populations in coastal lagoons. One exception involved the only high elevation population in the region, where the demography and alleles of unarmoured fish were similar to low armoured populations near the coast, exposing one of several cases of artificial translocation. Our results suggest that the current "management-by-phenotype" approach, based on lateral plates, is incidentally protecting the most imperilled populations; however, redirecting efforts toward evolutionary units, regardless of phenotype, may more effectively preserve adaptive potential.


Subject(s)
Smegmamorpha , Animals , Mexico , Smegmamorpha/genetics , Biological Evolution , Microsatellite Repeats , Demography
3.
Mol Ecol ; 31(20): 5214-5230, 2022 10.
Article in English | MEDLINE | ID: mdl-35962747

ABSTRACT

Identifying how natural (i.e., unaltered by human activity) and anthropogenic landscape variables influence contemporary functional connectivity in terrestrial organisms can elucidate the genetic consequences of environmental change. We examine population genetic structure and functional connectivity among populations of a declining species, the Blainville's horned lizard (Phrynosoma blainvillii), in the urbanized landscape of the Greater Los Angeles Area in Southern California, USA. Using single nucleotide polymorphism data, we assessed genetic structure among populations occurring at the interface of two abutting evolutionary lineages, and at a fine scale among habitat fragments within the heavily urbanized area. Based on the ecology of P. blainvillii, we predicted which environmental variables influence population structure and gene flow and used gravity models to distinguish among hypotheses to best explain population connectivity. Our results show evidence of admixture between two evolutionary lineages and strong population genetic structure across small habitat fragments. We also show that topography, microclimate, and soil and vegetation types are important predictors of functional connectivity, and that anthropogenic disturbance, including recent fire history and urban development, are key factors impacting contemporary population dynamics. Examining how natural and anthropogenic sources of landscape variation affect contemporary population genetics is critical to understanding how to best manage sensitive species in a rapidly changing landscape.


Subject(s)
Genetic Variation , Lizards , Animals , Ecosystem , Gene Flow , Genetic Variation/genetics , Genetics, Population , Humans , Lizards/genetics , Los Angeles , Soil
4.
J Hered ; 113(6): 632-640, 2022 11 30.
Article in English | MEDLINE | ID: mdl-35939354

ABSTRACT

The glossy snake (Arizona elegans) is a polytypic species broadly distributed across southwestern North America. The species occupies habitats ranging from California's coastal chaparral to the shortgrass prairies of Texas and southeastern Nebraska, to the extensive arid scrublands of central México. Three subspecies are currently recognized in California, one of which is afforded state-level protection based on the extensive loss and modification of its preferred alluvial coastal scrub and inland desert habitat. We report the first genome assembly of A. elegans occidentalis as part of the California Conservation Genomics Project (CCGP). Consistent with the reference genome strategy of the CCGP, we used Pacific Biosciences HiFi long reads and Hi-C chromatin-proximity sequencing technologies to produce a de novo assembled genome. The assembly comprises a total of 140 scaffolds spanning 1,842,602,218 base pairs, has a contig NG50 of 61 Mb, a scaffold NG50 of 136 Mb, and a BUSCO complete score of 95.9%, and is one of the most complete snake genome assemblies. The A. e. occidentalis genome will be a key tool for understanding the genomic diversity and the basis of adaptations within this species and close relatives within the hyperdiverse snake family Colubridae.


Subject(s)
Colubridae , Animals , Colubridae/genetics , Arizona , Genomics , Genome , Chromosomes
5.
Integr Comp Biol ; 62(2): 262-274, 2022 08 25.
Article in English | MEDLINE | ID: mdl-35588059

ABSTRACT

Maintenance of genetic diversity at adaptive loci may facilitate invasions by non-native species by allowing populations to adapt to novel environments, despite the loss of diversity at neutral loci that typically occurs during founder events. To evaluate this prediction, we compared genetic diversity at major histocompatibility complex (MHC) and cytochrome b (cytb) loci from 20 populations of the American bullfrog (Rana catesbeiana) across theinvasive and native ranges in North America and quantified the presence of the pathogen Batrachochytrium dendrobatidis (Bd). Compared to native populations, invasive populations had significantly higher Bd prevalence and intensity, significantly higher pairwise MHC and cytb FST, and significantly lower cytb diversity, but maintained similar levels of MHC diversity. The two most common MHC alleles (LiCA_B and Rapi_33) were associated with a significant decreased risk of Bd infection, and we detected positive selection acting on four peptide binding residues. Phylogenetic analysis suggested invasive populations likely arose from a single founding population in the American Midwest with a possible subsequent invasion in the northwest. Overall, our study suggests that the maintenance of diversity at adaptive loci may contribute to invasion success and highlights the importance of quantifying diversity at functional loci to assess the evolutionary potential of invasive populations.


Subject(s)
Mycoses , Alleles , Animals , Genetic Variation , Major Histocompatibility Complex , Mycoses/genetics , Mycoses/microbiology , Mycoses/veterinary , Phylogeny , Polymorphism, Genetic , Rana catesbeiana/genetics , Rana catesbeiana/microbiology , Selection, Genetic , United States
6.
PLoS One ; 14(1): e0210766, 2019.
Article in English | MEDLINE | ID: mdl-30645624

ABSTRACT

A recent global trend toward retirement of farmland presents opportunities to reclaim habitat for threatened and endangered species. We examine habitat restoration opportunities in one of the world's most converted landscapes, California's San Joaquin Desert (SJD). Despite the presence of 35 threatened and endangered species, agricultural expansion continues to drive habitat loss in the SJD, even as marginal farmland is retired. Over the next decades a combination of factors, including salinization, climate change, and historical groundwater overdraft, are projected to lead to the retirement of more than 2,000 km2 of farmland in the SJD. To promote strategic habitat protection and restoration, we conducted a quantitative assessment of habitat loss and fragmentation, habitat suitability, climatic niche stability, climate change impacts, habitat protection, and reintroduction opportunities for an umbrella species of the SJD, the endangered blunt-nosed leopard lizard (Gambelia sila). We use our suitability models, in conjunction with modern and historical land use maps, to estimate the historical and modern rate of habitat loss to development. The estimated amount of habitat lost since the species became protected under endangered species law in 1967 is greater than the total amount of habitat currently protected through public ownership and conservation easement. We document climatic niche contraction and associated range contraction away from the more mesic margins of the species' historical distribution, driven by the anthropogenic introduction of exotic grasses and forbs. The impact of exotic species on G. sila range dynamics appears to be still unfolding. Finally, we use NASA fallowed area maps to identify 610 km2 of fallowed or retired agricultural land with high potential to again serve as habitat. We discuss conservation strategies in light of the potential for habitat restoration and multiple drivers of ongoing and historical habitat loss.


Subject(s)
Conservation of Natural Resources/methods , Desert Climate , Ecosystem , Agriculture , Animals , California , Climate Change , Endangered Species , Lizards , Models, Biological , Natural Resources , Phylogeography
7.
Biol Lett ; 14(6)2018 06.
Article in English | MEDLINE | ID: mdl-29899126

ABSTRACT

Striking faunal turnover across Asia and Australasia, most famously along the eastern edge of the Sunda Shelf or 'Wallace's Line', has been a focus of biogeographic research for over 150 years. Here, we investigate the origins of a highly threatened endemic lizard fauna (four species) on Christmas Island. Despite occurring less 350 km south of the Sunda Shelf, this fauna mostly comprises species from clades centred on the more distant regions of Wallacea, the Pacific and Australia (more than 1000 km east). The three most divergent lineages show Miocene (approx. 23-5 Ma) divergences from sampled relatives; and have recently become extinct or extinct in the wild, likely owing to the recent introduction of a southeast Asian snake (Lycodon capucinus). Insular distributions, deep phylogenetic divergence and recent decline suggest that rather than dispersal ability or recent origins, environmental and biotic barriers have impeded these lineages from diversifying on the continental Sunda Shelf, and thereby, reinforced faunal differentiation across Wallace's Line. Our new phylogenetically informed perspective further highlights the rapid loss of ancient lineages that has occurred on Christmas Island, and underlines how the evolutionary divergence and vulnerability of many island-associated lineages may continue to be underestimated.


Subject(s)
Animal Distribution , Lizards/classification , Phylogeography , Animals , Australia , Biological Evolution , Endangered Species , Islands
8.
Mol Ecol ; 27(2): 369-386, 2018 01.
Article in English | MEDLINE | ID: mdl-29193550

ABSTRACT

Life history adaptations and spatial configuration of metapopulation networks allow certain species to persist in extreme fluctuating environments, yet long-term stability within these systems relies on the maintenance of linkage habitat. Degradation of such linkages in urban riverscapes can disrupt this dynamic in aquatic species, leading to increased extinction debt in local populations experiencing environment-related demographic flux. We used microsatellites and mtDNA to examine the effects of collapsed network structure in the endemic Santa Ana sucker Catostomus santaanae of southern California, a threatened species affected by natural flood-drought cycles, "boom-and-bust" demography, hybridization and presumed artificial transplantation. Our results show a predominance of drift-mediated processes in shaping population structure and that reverse mechanisms for counterbalancing the genetic effects of these phenomena have dissipated with the collapse of dendritic connectivity. We use approximate Bayesian models to support two cases of artificial transplantation and provide evidence that one of the invaded systems better represents the historic processes that maintained genetic variation within watersheds than any remaining drainages where C. santaanae is considered native. We further show that a stable dry gap in the northern range is preventing genetic dilution of pure C. santaanae persisting upstream of a hybrid assemblage involving a non-native sucker and that local accumulation of genetic variation in the same drainage is influenced by position within the network. This work has important implications for declining species that have historically relied on dendritic metapopulation networks to maintain source-sink dynamics in phasic environments, but no longer possess this capacity in urban-converted landscapes.


Subject(s)
Acclimatization/physiology , Cypriniformes/physiology , DNA, Mitochondrial/genetics , Endangered Species , Acclimatization/genetics , Animals , California , Cypriniformes/genetics , Ecosystem , Floods , Fresh Water , Genetic Variation/genetics , Hybridization, Genetic , Microsatellite Repeats/genetics
9.
Mol Ecol ; 26(14): 3618-3635, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28370723

ABSTRACT

Genomic responses to habitat conversion can be rapid, providing wildlife managers with time-limited opportunities to enact recovery efforts that use population connectivity information that reflects predisturbance landscapes. Despite near-complete biome conversion, such opportunities may still exist for the endemic fauna and flora of California's San Joaquin Desert, but comprehensive genetic data sets are lacking for nearly all species in the region. To fill this knowledge gap, we studied the rangewide population structure of the endangered blunt-nosed leopard lizard Gambelia sila, a San Joaquin Desert endemic, using restriction site-associated DNA (RAD), microsatellite and mtDNA data to test whether admixture patterns and estimates of effective migration surfaces (EEMS) can identify land areas with high population connectivity prior to the conversion of native xeric habitats. Clustering and phylogenetic analyses indicate a recent shared history between numerous isolated populations and EEMS reveals latent signals of corridors and barriers to gene flow over areas now replaced by agriculture and urbanization. Conflicting histories between the mtDNA and nuclear genomes are consistent with hybridization with the sister species G. wislizenii, raising important questions about where legal protection should end at the southern range limit of G. sila. Comparative analysis of different data sets also adds to a growing list of advantages in using RAD loci for genetic studies of rare species. We demonstrate how the results of this work can serve as an evolutionary guidance tool for managing endemic, arid-adapted taxa in one of the world's most compromised landscapes.


Subject(s)
Desert Climate , Ecosystem , Endangered Species , Genetics, Population , Lizards/genetics , Animals , California , DNA, Mitochondrial/genetics , Gene Flow , Microsatellite Repeats , Phylogeny
10.
Ecol Evol ; 5(20): 4683-95, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26668732

ABSTRACT

Adaptation to different thermal environments has the potential to cause evolutionary changes that are sufficient to drive ecological speciation. Here, we examine whether climate-based niche divergence in lizards of the Plestiodon skiltonianus species complex is consistent with the outcomes of such a process. Previous work on this group shows that a mechanical sexual barrier has evolved between species that differ mainly in body size and that the barrier may be a by-product of selection for increased body size in lineages that have invaded xeric environments; however, baseline information on niche divergence among members of the group is lacking. We quantified the climatic niche using mechanistic physiological and correlative niche models and then estimated niche differences among species using ordination techniques and tests of niche overlap and equivalency. Our results show that the thermal niches of size-divergent, reproductively isolated morphospecies are significantly differentiated and that precipitation may have been as important as temperature in causing increased shifts in body size in xeric habitats. While these findings alone do not demonstrate thermal adaptation or identify the cause of speciation, their integration with earlier genetic and behavioral studies provides a useful test of phenotype-environment associations that further support the case for ecological speciation in these lizards.

11.
PLoS One ; 10(12): e0143718, 2015.
Article in English | MEDLINE | ID: mdl-26699614

ABSTRACT

BACKGROUND: Multiple host introductions to the same non-native environment have the potential to complete life cycles of parasites incidentally transported with them. Our goal was to identify a recently detected parasitic flatworm in the invasive Brown Treesnake (Boiga irregularis) on the remote Pacific island of Guam. We considered possible factors influencing parasite transmission, and tested for correlations between infection status and potential indicators of host fitness. We used genetic data from the parasite and information about the native ranges of other possible non-native hosts to hypothesize how it arrived on Guam and how its life cycle may be currently supported. METHODS: We identified the parasite by comparing larval morphology and mtDNA sequences with other Pseudophyllid tapeworms. We assessed probability of infection in individual snakes using logistic regression and examined different factors influencing presence of parasites in hosts. RESULTS: We identified the parasite as the pseudophyllid cestode Spirometra erinaceieuropaei, with all sampled worms from multiple snakes sharing a single mtDNA haplotype. Infection appears to be limited to the only freshwater watershed on the island, where infection prevalence was high (77.5%). Larger snakes had a higher probability of being infected, consistent with the chronic nature of such infections. While infection status was positively correlated with body condition, infected snakes tended to have lower intra-peritoneal fat body mass, potentially indicating a negative effect on energy stores. CONCLUSIONS: We discovered that B. irregularis inhabiting a small area of forested habitat in a freshwater watershed on Guam are often infected by a novel parasite of Asian origin. While further work is needed, this species of Spirometra, itself a non-native species, likely depends on a suite of recently introduced hosts from different parts of the world to complete the life cycle. This baseline study provides little evidence of any effects on host fitness, but additional data are needed to more thoroughly explore the consequences of infection in this invasive snake population.


Subject(s)
Cestode Infections/veterinary , Colubridae/parasitology , Host-Parasite Interactions , Introduced Species , Spirometra/physiology , Animals , Cestode Infections/epidemiology , Cestode Infections/transmission , Female , Guam , Logistic Models , Male
12.
Evol Appl ; 6(5): 808-822, 2013 07.
Article in English | MEDLINE | ID: mdl-29387167

ABSTRACT

Populations forming the edge of a species range are often imperiled by isolation and low genetic diversity, with proximity to human population centers being a major determinant of edge stability in modern landscapes. Since the 1960s, the California red-legged frog (Rana draytonii) has undergone extensive declines in heavily urbanized southern California, where the range edge has rapidly contracted northward while shifting its cardinal orientation to an east-west trending axis. We studied the genetic structure and diversity of these frontline populations, tested for signatures of contemporary disturbance, specifically fire, and attempted to disentangle these signals from demographic events extending deeper into the past. Consistent with the genetic expectations of the 'abundant-center' model, we found that diversity, admixture, and opportunity for random mating increases in populations sampled successively further away from the range boundary. Demographic simulations indicate that bottlenecks in peripheral isolates are associated with processes extending tens to a few hundred generations in the past, despite the demographic collapse of some due to recent fire-flood events. While the effects of recent disturbance have left little genetic imprint on these populations, they likely contribute to an extinction debt that will lead to continued range contraction unless management intervenes to stall or reverse the process.

13.
Am Nat ; 178(3): 320-32, 2011 Sep.
Article in English | MEDLINE | ID: mdl-21828989

ABSTRACT

Mechanical reproductive barriers have been dismissed as a major driver of animal speciation, yet the extent to which such barriers cause reproductive isolation in most animal groups is largely unknown and rarely tested. In this study, we used hierarchical Bayesian modeling of mate compatibility experiments to show that body size divergence in lizards of the Plestiodon skiltonianus complex contributes to reproductive isolation in at least three ways: males preferably court females that are more similar in size, females reject males that are highly divergent in size, and the size difference of a male and female in copula constrains the ability to align the genitalia for intromission. We used a predictive model to estimate the contributions of behavioral and mechanical barriers to reproductive isolation between populations with differing degrees of size divergence. This model shows that the mechanical barrier is more important than behavioral barriers at small and intermediate degrees of size divergence, suggesting that it acts earlier during speciation when body morphology is more similar between diverging lineages. Given that correlated divergence in size and ecology is common in animals, similar constraints imposed by the geometry of the mating posture may apply to a variety of major animal lineages and merit further attention in speciation research.


Subject(s)
Body Size , Copulation , Genetic Speciation , Lizards/physiology , Reproductive Isolation , Animals , Bayes Theorem , Female , Male , Mating Preference, Animal , Models, Biological , North America
14.
Immunogenetics ; 62(11-12): 741-51, 2010 Dec.
Article in English | MEDLINE | ID: mdl-20844870

ABSTRACT

Genes encoded by the major histocompatibility complex (MHC) play key roles in the vertebrate immune system. However, our understanding of the evolutionary processes and underlying genetic mechanisms shaping these genes is limited in many taxa, including amphibians, a group currently impacted by emerging infectious diseases. To further elucidate the evolution of the MHC in frogs (anurans) and develop tools for population genetics, we surveyed allelic diversity of the MHC class II ß1 domain in both genomic and complementary DNA of seven New World species in the genus Rana (Lithobates). To assign locus affiliation to our alleles, we used a "gene walking" technique to obtain intron 2 sequences that flanked MHC class IIß exon 2. Two distinct intron sequences were recovered, suggesting the presence of at least two class IIß loci in Rana. We designed a primer pair that successfully amplified an orthologous locus from all seven Rana species. In total, we recovered 13 alleles and documented trans-species polymorphism for four of the alleles. We also found quantitative evidence of selection acting on amino acid residues that are putatively involved in peptide binding and structural stability of the ß1 domain of anurans. Our results indicated that primer mismatch can result in polymerase chain reaction (PCR) bias, which influences the number of alleles that are recovered. Using a single locus may minimize PCR bias caused by primer mismatch, and the gene walking technique was an effective approach for generating single-copy orthologous markers necessary for future studies of MHC allelic variation in natural amphibian populations.


Subject(s)
Genes, MHC Class II , Polymorphism, Genetic , Ranidae/genetics , Ranidae/immunology , Amino Acid Sequence , Animals , Anura/genetics , Anura/immunology , Exons , Introns , Molecular Sequence Data , Phylogeny , Selection, Genetic , Sequence Alignment
15.
Proc Biol Sci ; 274(1619): 1701-8, 2007 Jul 22.
Article in English | MEDLINE | ID: mdl-17490944

ABSTRACT

Speciation is generally viewed as an irreversible process, although habitat alterations can erase reproductive barriers if divergence between ecologically differentiated species is recent. Reversed speciation might also occur if geographical contact is established between species that have evolved the same reproductive isolating barrier in parallel. Here, we demonstrate a loss of intrinsic reproductive isolation in a clade of scincid lizards as a result of parallel body size evolution, which has allowed for gene flow where large-bodied lineages are in secondary contact. An mtDNA phylogeny confirms the monophyly of the Plestiodon skiltonianus species complex, but rejects that of two size-differentiated ecomorphs. Mate compatibility experiments show that the high degree of body size divergence imposes a strong reproductive barrier between the two morphs; however, the strength of the barrier is greatly diminished between parallel-evolved forms. Since two large-bodied lineages are in geographical contact in the Sierra Nevada Mountains of California, we were also able to test for postzygotic isolation under natural conditions. Analyses of amplified fragment length polymorphisms show that extensive gene exchange is occurring across the contact zone, resulting in an overall pattern consistent with isolation by distance. These results provide evidence of reversed speciation between clades that diverged from a common ancestor more than 12Myr ago.


Subject(s)
Body Size/physiology , Gene Flow/genetics , Genetic Speciation , Genetics, Population , Lizards/physiology , Phylogeny , Amplified Fragment Length Polymorphism Analysis , Animals , California , DNA, Mitochondrial/genetics , Demography , Population Dynamics , Regression Analysis , Sexual Behavior, Animal/physiology , Species Specificity
16.
Evol Dev ; 8(6): 477-90, 2006.
Article in English | MEDLINE | ID: mdl-17073932

ABSTRACT

This study uses a phylogenetic framework to explore the causes of parallelism in two North American scincid lizard assemblages: the skiltonianus and fasciatus species groups of the genus Plestiodon. Each group consists of several closely related species with conserved neonate morphology; features that distinguish species become accentuated during ontogeny, and these differences often resemble different endpoints along a developmental continuum. This continuum is believed to be an expression of the ancestral ontogeny, and has led to the hypothesis that evolutionary change in development has generated much of the observed morphological diversity. However, progress on understanding these mechanisms is limited by a lack of well-supported phylogenetic data for the fasciatus group, and for Plestiodon in general. Recent phylogenetic studies on the skiltonianus group have revealed previously undetected cases of parallelism, and raise the possibility that similar cases have yet to be discovered in the fasciatus group. Here, I estimate a phylogeny to test the monophyly of the fasciatus group and infer its relationship with other North American Plestiodon using 2537 bp from six mtDNA genes. I use the phylogeny to reconstruct the mode (graduated vs. punctuated) and direction of body size evolution, to map the evolution of two predominant color morphs, and to test whether size and color pattern evolve concertedly. The results show that the morphotypes of the traditional fasciatus group constitute good species, but that the species group is rendered paraphyletic by several geographically overlapping species that deviate from the fasciatus-like ontogeny. Body size evolution has occurred gradually and bi-directionally, and shifts to large body size have been consistently associated with the loss of the striped color pattern during ontogeny. I show that parallelism, a lack of rigorous phylogenetic analysis, and a reliance on shared ontogenetic features for predicting phylogenetic relatedness, has misled the traditional systematics of these lizards, but that general ideas concerning the role of development in their morphological evolution remain supported. I close by proposing that the processes influencing repeated phyletic patterns in the skiltonianus and fasciatus groups represent adherence to an ancestral ground state, and discuss the importance of using phylogenies for the initial characterization of evolutionary changes in development.


Subject(s)
Biological Evolution , Lizards/classification , Lizards/genetics , Animals , Base Sequence , Body Size , DNA Primers/genetics , Lizards/anatomy & histology , Lizards/growth & development , Models, Genetic , North America , Phylogeny , Species Specificity
17.
Evolution ; 56(7): 1498-513, 2002 Jul.
Article in English | MEDLINE | ID: mdl-12206249

ABSTRACT

We identify instances of parallel morphological evolution in North American scincid lizards of the Eumeces skiltonianus species group and provide evidence that this system is consistent with a model of ecological speciation. The group consists of three putative species divided among two morphotypes, the small-bodied and striped E. skiltonianus and E. lagunensis versus the large-bodied and typically uniform-colored E. gilberti. Members of the group pass through markedly similar phenotypic stages during early development, but differ with respect to where terminal morphology occurs along the developmental sequence. The morphotypes also differ in habitat preference, with the large-bodied gilberti form generally inhabiting lower elevations and drier environments than the smaller, striped morphs. We inferred the phylogenetic relationships of 53 skiltonianus group populations using mtDNA sequence data from the ND4 protein-coding gene and three flanking tRNAs (900 bp total). Sampling encompassed nearly the entire geographic range of the group, and all currently recognized species and subspecies were included. Our results provide strong evidence for parallel origins of three clades characterized by the gilberti morphotype, two of which are nested within the more geographically widespread E. skiltonianus. Eumeces lagunensis was also nested among populations of E. skiltonianus. Comparative analyses using independent contrasts show that evolutionary changes in body size are correlated with differences in adult color pattern. The independently derived association of gilberti morphology with warm, arid environments suggests that phenotypic divergence is the result of adaptation to contrasting selection regimes. We provide evidence that body size was likely the target of natural selection, and that divergences in color pattern and mate recognition are probable secondary consequences of evolving large body size.


Subject(s)
Adaptation, Biological/genetics , Lizards/genetics , Phylogeny , Animals , DNA, Mitochondrial , Ecology , Genetic Variation , Genetics, Population , Lizards/anatomy & histology , Lizards/classification , Selection, Genetic , Sequence Analysis, DNA
SELECTION OF CITATIONS
SEARCH DETAIL
...